• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strukturelle Untersuchungen an Varianten des Ecballium elaterium Trypsin Inhibitors-II (EETI-II) / Structural characterization of variants of the Ecballium elaterium trypsin inhibitor EETI-II

Krätzner, Ralph 27 June 2001 (has links)
No description available.
2

Electronic Structure and Magnetic Properties of a High-Spin MnIII Complex: [Mn(mesacac)3] (mesacac = 1,3-Bis(2,4,6-trimethylphenyl)-propane-1,3-dionato)

Strassner, Nina M., Stipurin, Sergej, Koželj, Primož, Grin, Yuri, Strassner, Thomas 01 March 2024 (has links)
Metal acetylacetonates of the general formula [M(acac)3] (MIII=Cr, Mn, Fe, Co) are among the best investigated coordination compounds. Many of these first-row transition metal complexes are known to have unique electronic properties. Independently, photophysical research with different β-diketonate ligands pointed towards the possibility of a special effect of the 2,4,6-trimethylphenyl substituted acetylacetonate (mesacac) on the electron distribution between ligand and metal (MLCT). We therefore synthesized and fully characterized the previously unknown octahedral title complex. Its solid-state structure shows a Jahn-Teller elongation with two Mn−O bonds of 2.12/2.15 Å and four Mn−O bonds of 1.93 Å. Thermogravimetric data show a thermal stability up to 270 °C. High-resolution mass spectroscopy helped to identify the decomposition pathways. The electronic state and spin configuration of manganese were characterized with a focus on its magnetic properties by measurement of the magnetic susceptibility and triple-zeta density functional theory (DFT) calculations. The high-spin state of manganese was confirmed by the determination of an effective magnetic moment of 4.85 μB for the manganese center.

Page generated in 0.0661 seconds