• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the asymptotic spectral distribution of random matrices : closed form solutions using free independence

Pielaszkiewicz, Jolanta Maria January 2013 (has links)
The spectral distribution function of random matrices is an information-carrying object widely studied within Random matrix theory. In this thesis we combine the results of the theory together with the idea of free independence introduced by Voiculescu (1985). Important theoretical part of the thesis consists of the introduction to Free probability theory, which justifies use of asymptotic freeness with respect to particular matrices as well as the use of Stieltjes and R-transform. Both transforms are presented together with their properties. The aim of thesis is to point out characterizations of those classes of the matrices, which have closed form expressions for the asymptotic spectral distribution function. We consider all matrices which can be decomposed to the sum of asymptotically free independent summands. In particular, explicit calculations are performed in order to illustrate the use of asymptotic free independence to obtain the asymptotic spectral distribution for a matrix Q and generalize Marcenko and Pastur (1967) theorem. The matrix Q is defined as <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?Q%20=%20%5Cfrac%7B1%7Dn%20X_1X%5E%5Cprime_1%20+%20%5Ccdot%5Ccdot%5Ccdot%20+%20%5Cfrac%7B1%7Dn%20X_kX%5E%5Cprime_k," />  where Xi is p × n matrix following a matrix normal distribution, Xi ~ Np,n(0, \sigma^2I, I). Finally, theorems pointing out classes of matrices Q which lead to closed formula for the asymptotic spectral distribution will be presented. Particularly, results for matrices with inverse Stieltjes transform, with respect to the composition, given by a ratio of polynomials of 1st and 2nd degree, are given.
2

On the asymptotic spectral distribution of random matrices : Closed form solutions using free independence

Pielaszkiewicz, Jolanta January 2013 (has links)
The spectral distribution function of random matrices is an information-carrying object widely studied within Random matrix theory. In this thesis we combine the results of the theory together with the idea of free independence introduced by Voiculescu (1985). Important theoretical part of the thesis consists of the introduction to Free probability theory, which justifies use of asymptotic freeness with respect to particular matrices as well as the use of Stieltjes and R-transform. Both transforms are presented together with their properties. The aim of thesis is to point out characterizations of those classes of the matrices, which have closed form expressions for the asymptotic spectral distribution function. We consider all matrices which can be decomposed to the sum of asymptotically free independent summands. In particular, explicit calculations are performed in order to illustrate the use of asymptotic free independence to obtain the asymptotic spectral distribution for a matrix Q and generalize Marcenko and Pastur (1967) theorem. The matrix Q is defined as <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?Q%20=%20%5Cfrac%7B1%7Dn%20X_1X%5E%5Cprime_1%20+%20%5Ccdot%5Ccdot%5Ccdot%20+%20%5Cfrac%7B1%7Dn%20X_kX%5E%5Cprime_k," />  where Xi is p × n matrix following a matrix normal distribution, Xi ~ Np,n(0, \sigma^2I, I). Finally, theorems pointing out classes of matrices Q which lead to closed formula for the asymptotic spectral distribution will be presented. Particularly, results for matrices with inverse Stieltjes transform, with respect to the composition, given by a ratio of polynomials of 1st and 2nd degree, are given.
3

Controllability and Observability of the Discrete Fractional Linear State-Space Model

Nguyen, Duc M 01 April 2018 (has links)
This thesis aims to investigate the controllability and observability of the discrete fractional linear time-invariant state-space model. First, we will establish key concepts and properties which are the tools necessary for our task. In the third chapter, we will discuss the discrete state-space model and set up the criteria for these two properties. Then, in the fourth chapter, we will attempt to apply these criteria to the discrete fractional model. The general flow of our objectives is as follows: we start with the first-order linear difference equation, move on to the discrete system, then the fractional difference equation, and finally the discrete fractional system. Throughout this process, we will develop the solutions to the (fractional) difference equations, which are the basis of our criteria.

Page generated in 0.0591 seconds