• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Rad51 family of proteins: Interactions, vitamin D, and implications in head and neck cancer

Lu, Daniel Kee 01 January 2013 (has links)
Protection of the genome from carcinogenic consequences of DNA double-strand breaks (DSBs) is accomplished through the pathways of non-homologous end-joining (NHEJ) or homologous recombinational repair. Five human proteins with homology to Rad51 known as the Rad51 paralogs, Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3, whose loss of function in cell lines leads to high chromosomal instability. Previous studies have shown Rad51C participate in two paralog protein complexes, one containing Rad51B, Rad51C, Rad51D and XRCC2 (BCDX2) and the other containing only Rad51C and XRCC3 (CX3). However, the only structural data available is the crystal structure of RecA, the bacterial homolog, the determination of the N-terminus of human Rad51 by NMR, and the crystal structure of Pyroccocus furious Rad51. Currently the Alvinlla pompejana Rad51C has been cloned, expressed and is currently being crystallized in the Tainer laboratory (UC Berkeley) since the human Rad51C protein has proven too difficult to be utilized. To test functional association of Hs Rad51B and Hs XRCC3 to Ap Rad51C. The human proteins were heterologously expressed in Pichia pastoris and the other expressed in E. coli. The proteins were extracted and interaction was tested through co-immunoprecipitation. Initial results depict weak binding or an unstable interaction between Hs Rad51B and Ap Rad51C. Hs XRCC3 and Ap Rad51C interaction remains unclear and requires further testing. Additionally, we have utilized a cellular model of HNSCC to identify whether the down-regulation of Rad51 after application of VD 3 is concomitant with the down-regulation of NBS1. NBS1 is a DNA repair protein involved in both pathways of DNA double-strand break repair, non-homologous end-joining and homologous recombinational repair. It has recently been demonstrated that NBS1 binds to Rad51 aiding in its localization to sites of DNA damage. VD 3 is a potential chemopreventive agent in the treatment of head and neck cancer. For the in vitro model Rad51 and NBS1 protein were both extracted from SCC25 and MCF-7 cancer cell lines were treated with 100 nM of VD 3 . For the in vivo model hamsters cheek pouch tissue sections with VD 3 treated and DMBA over the course of 14 weeks were used. Rad51 and NBS1 staining is restricted to the nuclei of the basal cell layer of the epithelium in VD 3 treated animals as compared to untreated controls where staining is evident throughout the dysplastic epithelium and is not restricted to nuclei. Unlike the western blot data of Rad51 that shows similar downregulation as the immunocytochemistry, the western blot analysis of NBS1 is unclear. However, the immunocytochemistry suggests that NBS1 is also downregulated by VD 3 in vivo, and therefore, it may be implied that both the HRR and NHEJ pathways are involved in the cellular effects of VD 3 in HNSCC.
2

Etude des acteurs et des interactions entre les voies de recombinaison chez Arabidopsis thaliana / Study of the actors and of the interactions between the recombination pathways of Arabidopsis thaliana

Serra, Heïdi 05 September 2014 (has links)
La réparation des cassures double brin (CDB) de l'ADN par recombinaison est essentielle au maintien de l'intégrité du génome de tous les être vivants. Ce processus doit cependant être finement régulé puisque la recombinaison peut générer des mutations ou des réarrangements chromosomiques, parfois extrêmement délétères pour la cellule. Les CDB peuvent être réparées par deux mécanismes : la recombinaison non homologue (ou jonction des extrémités d'ADN) ou la recombinaison homologue (impliquant une homologie de séquence entre les molécules recombinantes). Dans les cellules somatiques, les deux voies principales de recombinaison homologue (RH) sont la voie Synthesis Dependent Strand Annealing (SDSA) dépendante de la recombinase RAD51 et la voie Single Strand Annealing (SSA) indépendante de RAD51. Nos résultats ont d'abord mis en évidence un rôle inattendu de XRCC2, RAD51B et RAD51D - trois paralogues de RAD51 - dans la voie SSA. Nous avons confirmé que la fonction de la protéine XRCC2 dans la voie SSA ne dépend pas de RAD51, ce qui démontre que certains paralogues de RAD51 ont acquis des fonctions indépendantes de la recombinase. La différence de sévérité des phénotypes des mutants individuels ainsi que les analyses d'épistasie menées sur le double et le triple mutant suggèrent des fonctions individuelles de ces protéines au cours du SSA. Nous proposons qu'elles facilitent l'étape d'hybridation des deux séquences complémentaires situées de part et d'autre de la cassure, bien que ceci reste à confirmer par des études in vitro. L'étude des fonctions de l'hétérodimère XPF-ERCC1 - un complexe impliqué dans le clivage des extrémités d'ADN non homologues au cours des voies de RH - a révélé un rôle inhibiteur de ce complexe sur la voie SDSA. Cette action est dépendante de son activité endonucléasique et serait liée au clivage des longues extrémités 3' sortantes réalisant l'invasion d'un duplex d'ADN homologue, l'étape initiale de la voie SDSA. Notre étude a de plus confirmé que le rôle du complexe dépend de la longueur des extrémités non homologues chez Arabidopsis, comme chez les mammifères et la levure. Bien que le complexe XPF-ERCC1 soit essentiel au clivage des longues extrémités d'ADN non homologue, il n'est pas requis à l'élimination des courtes extrémités au cours de la RH. / The repair of DNA double-strand breaks (DSB) by recombination is essential for the maintenance of genome integrity of all living organisms. However, recombination must be finely regulated as it can generate mutations or chromosomal rearrangements, sometimes extremely deleterious to the cell. DSB can be repaired by two classes of recombination mechanism: non-homologous recombination (or DNA End Joining) or homologous recombination (implicating DNA sequence homology between the recombining molecules). In somatic cells, the two main pathways of homologous recombination (HR) are RAD51-dependent Synthesis Dependent Strand Annealing (SDSA) and RAD51-independent Single Strand Annealing (SSA). Our results have demonstrated an unexpected role of XRCC2, RAD51B and RAD51D - three RAD51 paralogues – in the SSA pathway. We confirmed that the function of XRCC2 in SSA does not depend upon RAD51, thus demonstrating that some RAD51 paralogues have acquired RAD51 recombinase-independent functions. The different severities of individual mutant phenotypes and epistasis analyses carried out on the double and triple mutants suggest individual functions of these proteins in SSA recombination. We propose that they facilitate hybridization of the two complementary sequences located on both sides of the break, although this remains to be confirmed by in vitro experiments. Study of the roles of XPF-ERCC1 - a complex involved in the cleavage of non-homologous DNA ends during HR - revealed an inhibitory role of this complex on the SDSA pathway. This is dependent on its endonuclease activity and is probably due to the cleavage of long 3' ends performing the homologous DNA duplex invasion, the initial step of the SDSA pathway. Our analyses also confirmed that the role of the complex depends on the length of the nonhomologous ends, as seen in mammals and yeasts. Although XPF-ERCC1 is essential for the cleavage of long nonhomologous DNA ends, it is not required for the elimination of short ends during HR.

Page generated in 0.0213 seconds