1 |
Caracterização dos genes rafinose sintase e estaquiose sintase em gramíneasPimont, Pedro Teixeira January 2018 (has links)
Orientadora: Profª. Drª. Hana Paula Masuda / Coorientador: Prof. Dr. Danilo da Cruz Centeno / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Biotecnociência, São Bernardo do Campo, 2018. / Os oligossacarídeos da série da rafinose (OSRs) são carboidratos formados pela adição
sequencial de um grupo galactosil, geralmente doado por uma molécula de galactinol, à
molécula de sacarose. Essa via é regulada principalmente por três enzimas. A galactinol sintase (GOLS) que é responsável pela síntese de galactinol. A rafinose sintase (RAFS) que transfere o resíduo galactosil do galactinol à molécula de sacarose dando origem a rafinose. E a estaquiose sintase (STS) que é responsável pela transferência de galactosil para a rafinose,
dando origem a estaquiose. Esses açúcares desempenham importantes papéis fisiológicos nas células vegetais e têm sido considerados como moléculas chave na resposta ao estresse abiótico. Cada enzima envolvida no metabolismo dos OSRs é codificada por uma família de gênica. No entanto, ainda são escassos os trabalhos que apresentem descrições sistemáticas dos genes e suas relações evolutivas nas espécies vegetais. Os poucos trabalhos disponíveis focam nos genes que codificam GOLS, frequentemente considerada a enzima-chave da via. O objetivo deste trabalho foi estudar a diversidade e evolução dos genes rafs e sts em monocotiledôneas, para ampliar o conhecimento sobre os genes nessas espécies. Foram investigados genes rafs e sts em oito espécies vegetais, seis monocotiledôneas e duas dicotiledôneas. Também foram produzidas análises filogenéticas, de ortologia e a caracterização dos domínios proteicos nos genes identificados. Os resultados mostraram que RAFS e STS existem em grande diversidade e que são codificadas por vários genes putativos. As árvores filogenéticas permitiram diferenciar rafs de sts, sugerir relações evolutivas entre os genes e identificar diferentes grupos nessa família gênica. Análises de sintenia indicam a existência de genes ortólogos e duplicações in tandem. Por fim, a análise dos domínios proteicos confirmou a similaridade entre rafs e sts. Como conclusão, essa dissertação expande o conhecimento a respeito dos genes codificadores da via do OSRs, fornece informações para futuros trabalhos com foco em biotecnologia e contribui com a descrição das informações genômicas obtidas nos projetos de sequenciamento genético de espécies vegetais. / The raffinose series oligosaccharides (RFOs) are small carbohydrates synthetized by the
sequential addition of a galactosil group, usually donated by a galactinol to sucrose. This
metabolic pathway is regulated, among others, by the galactinol synthase (GOLS) enzyme,
responsible for the synthesis of galactinol; the raffinose synthase (RAFS), responsible for the
transfer of a galactosil group to sucrose, synthetizing rafinose, and; stachyose synthase (STS),
responsible for the transfer of another galactosil group to raffinose, thus producing stachyose. These sugars play important physiological roles on plant cells and are considered key molecules in the response to abiotic stress. The enzymes involved on the RFOs metabolism exhibit a large number of functional genes. However, few studies present systematic descriptions of these genes and their evolutionary relationships on plant species. The few available studies focused on the genes that code for GOLS, frequently considered the key enzyme of RFOs metabolic pathway. The objective of this study was to understand the diversity and evolution of the rafs and sts genes in monocot species, to extend the knowledge on these plant genes. Rafs and sts genes were surveyed in eight plant species, six monocot and two dicot species. Phylogenetic and synteny analyses were performed, as well as, the characterization of the protein domains. The results showed that a large number of putative genes codifies both RAFS and STS, indicating that this gene family have a high diversity in plant genomes. The phylogenetic trees allowed proposing the evolutionary relationships between those genes and suggested the existence of different sequence groups. Synteny analyses showed groups of orthologue genes and in tandem gene duplications. Finally, the protein domain analyses corroborated the high
similarity between rafs and sts. In conclusion, this work expands the knowledge about RFOs
metabolism genes, provided information for further biotechnology studies and contributes to
the description of sequence data from genomics projects.
|
2 |
Identification of Bioactive Molecules in the Control of Flowering TimePraena Tamayo, Jesús 02 September 2022 (has links)
[ES] El tiempo de floración es uno de los caracteres más importantes que influyen en la productividad y el rendimiento de los cultivos. La identificación de compuestos sintéticos que sean bioactivos en el control de la inducción floral es de gran interés. Su identificación podría permitirnos ajustar el tiempo de floración en los cultivos, adaptándolos a las condiciones ambientales más favorables. Para identificar estos compuestos, hemos tomado dos enfoques diferentes: un cribado genético químico y la caracterización del metaboloma de transición floral.
En primer lugar, realizamos un rastreo de genética química para identificar moléculas pequeñas que tengan el potencial de controlar la expresión del florígeno, FLOWERING LOCUS T (FT) o la actividad o señalización de FT en Arabidopsis. Para ello, hemos utilizado plantas transgénicas que expresan el gen ß-GLUCURONIDASE (GUS) bajo el control del promotor FT para probar una librería de 360 moléculas preseleccionadas. Los resultados positivos obtenidos se volvieron a analizar mediante un cribado secundario basado en la expresión del gen reportero LUCIFERASE (LUC) bajo el control del promotor FT. Utilizando este enfoque, hemos identificado una molécula que induce con éxito la floración en condiciones de cultivo in vitro.
En segundo lugar, hemos caracterizado la función del ácido pipecólico (Pip), una molécula previamente identificada como candidata a regular la floración. Hemos confirmado que las mutaciones en las enzimas responsables de la biosíntesis de Pip muestran una alteración en la respuesta del tiempo de floración. Además, hemos identificado un nuevo papel del Pip relacionado con el crecimiento y el tamaño de la roseta de Arabidopsis.
Finalmente, utilizamos un sistema inducible basado en el promotor de CONSTANS (CO) que controla la expresión del gen endógeno de CO fusionado con el receptor de glucocorticoides de rata (CO::GR). De manera que con un solo tratamiento con dexametasona podemos inducir la floración. Con este sistema, realizamos un estudio del metaboloma de muestras de ápices y hojas mediante técnicas de metabolómica dirigida, lipidómica, cuantificación hormonal y transcriptómica. La integración de estos conjuntos de datos ómicos nos ha permitido identificar rutas metabólicas que se encuentran alteradas durante la transición floral. A su vez, la caracterización de mutantes de pérdida de función que codifican enzimas clave de esas vías metabólicas, reveló que algunos de estos mutantes mostraban un fenotipo afectado para el tiempo de floración. Entre ellos, nos enfocamos en la caracterización de los genes relacionados con el metabolismo de la rafinosa, un oligosacárido de reserva. Mutantes afectados en el gen RAFFINOSE SYNTHASE 5 (RS5) presentan un fenotipo de floración temprana y fertilidad reducida. En base a los resultados obtenidos, proponemos un modelo en el que, durante la transición floral, se produce una reestructuración de las ratios entre carbohidratos sencillos (monosacáridos y disacáridos) y de reserva, como la rafinosa. Estos cambios podrían ser modulados por el ácido abscísico (ABA) y por genes relacionados con la floración, desencadenando cambios en el metabolismo de la trehalosa y promoviendo una expresión temprana de FT. / [CA] El temps de floració és un dels caràcters amb més influència en la productivitat i el rendiment dels cultius. La identificació de compostos sintètics bioactius per al control de la inducció floral és de gran interés, ja que la seua identificació podria permetre ajustar el temps de floració dels cultius, aspecte que podria contribuir a l'adaptació a condicions ambientals més favorables. Per a identificar aquests compostos, hem portat a terme dues aproximacions diferents: un garbellat genètic químic i la caracterització del metaboloma de la transició floral. En primer lloc, hem realitzat un cribratge genètic-químicper a identificar xicotetes molècules amb potencial per a controlar l'expressió del florígen, FLOWERING LOCUS T (FT) o l'activitat o la senyalització de FT a Arabidopsis. Per a portar a terme aquest cribratge, hem utilitzat plantes transgèniques que expressen el gen ß-GLUCURONIDASE (GUS) sota el control del promotor de FT amb les quals hem assajat una llibreria de 360 molècules preseleccionades de manera prèvia. Els resultats positius obtinguts en aquest cribratge t s'han sotmés a un cribratge secundari basat en l'expressió del gen reporter LUCIFERASE (LUC) sota el control del promotor FT. La utilització d'aquesta primera aproximació ha permés la idenfiticació d'una molècula que indueix amb èxit la floració en condicions de cultiu in vitro. En En segon lloc, hem caracteritzat la funció de l'àcid pipecòlic (Pip), una molècula prèviament identificada com a candidata a regular la floració. Aquesta aproximació ens ha permet confirmar que mutacions als enzims responsables de la biosíntesi de Pip comporten una alteració al temps de floració. A més, en aquest treball hem identificat un nou paper del Pip relacionat amb el creixement i la grandària de la roseta d'Arabidopsis. Finalment, hem utilitzat un sistema induïble basat en el promotor de CONSTANS (CO) que controla l'expressió del gen endogen de CO fusionat al receptor de glucocorticoides de rata (CO::GR). Aquesta construcció ens proporciona una ferramenta amb la qual induir la floració amb un sol tractament amb dexametasona. A continuació, hem realitzat un estudi del metaboloma de mostres d'àpexs i fulles mitjançant tècniques de metabolòmica dirigida, lipidómica, quantificació hormonal i transcriptòmica. La integració d'aquest conjunt de dades ómiques ens ha permés identificar les rutes metabòliques que es troben alterades durant la transició floral. Al mateix temps, la caracterització de mutants de pèrdua de funció que codifiquen enzims clau per a aquestes rutes metabòliques, ha revelat que alguns d'aquests mutants mostren un fenotip afectat pel que fa al temps de floració. Dintre dels mutants analitzats, ens hem centrat en la caracterització dels gens relacionats amb el metabolisme de la rafinosa, un oligosacàrid de reserva. Els mutants del gen RAFFINOSE SYNTHASE 5 (RS5) presenten un fenotip de floració primerenca i fertilitat reduïda. Sobre la base dels resultats obtinguts, proposem un model en el qual, durant la transició floral, es produeix una reestructuració de les ràtios entre carbohidrats senzills (monosacàrids i disacàrids) i de reserva, com la rafinosa. Aquests canvis podrien ser modulats per l'àcid abscísic (ABA) i per gens relacionats amb la floració, i desencadenariencanvis al metabolisme de la trehalosa, així com la generació de l'expressió primerenca de FT. / [EN] Flowering time is one of the most important traits affecting crop productivity and yield. The identification of natural or synthetic bioactive compounds for the control of flowering induction is of great interest. The identification of compounds with the potential to regulate flowering could allow us to fine-tune flowering responses in crops and adapt them to the changing environmental conditions. To identify these compounds, we have taken two different approaches: a chemical genetic screening and the characterization of the metabolome of floral transition.
First, we performed a chemical genetic screening to identify small molecules that have the potential to control the expression of the florigen FLOWERING LOCUS T (FT) or FT activity or signaling in Arabidopsis. We used transgenic plants expressing the ß-GLUCURONIDASE gene (GUS) under the control of the FT promoter to test a preselected library of 360 molecules. Positive hits were retested by a secondary screening based on the expression of the LUCIFERASE (LUC) reporter gene under the control of the FT promoter. Using this approach, we have identified one molecule that successfully induces flowering under in vitro culture conditions.
Secondly, we have characterized the function of pipecolic acid (Pip), a molecule previously identified as a candidate to regulate flowering time. We have confirmed that mutations in enzymes responsible for Pip biosynthesis display an altered flowering response. A new role for Pip in rosette growth is also revealed in this work.
Finally, we used an inducible system based on the promoter of CONSTANS (CO) driving the expression of CO fused to the rat glucocorticoid receptor (CO::GR). Such a construction provides a tool to induce flowering with a single dexamethasone treatment. We then performed a comprehensive metabolomic study of the shoot apex and leaf samples that included targeted metabolomics, lipidomics, hormone quantification, and transcriptomics. Integration of these omic datasets has allowed us to point out metabolic pathways that are altered during floral induction. Characterization of loss-of-function mutants coding key enzymes of those metabolic pathways revealed that some of these mutants showed a flowering time phenotype. Among them, we focused on the characterization of the contribution of the raffinose metabolism, a storage oligosaccharide, to the determination of flowering time. Mutants affecting RAFFINOSE SYNTHASE 5 (RS5) exhibit an early flowering phenotype and reduced fertility. We propose a model in which the balance between simple and storage carbohydrates in the apex changes during floral induction. This change could be modulated by ABA and flowering-related genes, and it triggers changes in trehalose metabolism, promoting flowering by an early FT upregulation. / Praena Tamayo, J. (2022). Identification of Bioactive Molecules in the Control of Flowering Time [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185177
|
Page generated in 0.0306 seconds