• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 634
  • 272
  • 105
  • 84
  • 29
  • 27
  • 20
  • 15
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1465
  • 1465
  • 272
  • 151
  • 140
  • 139
  • 136
  • 132
  • 128
  • 116
  • 113
  • 105
  • 98
  • 92
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
791

Multi-scale analysis of morphology, mechanics, and composition of collagen in murine osteogenesis imperfecta

Bart, Zachary Ryan 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Osteogenesis imperfecta is a rare congenital disease commonly characterized by brittle bones caused by mutations in the genes encoding Type I collagen, the single most abundant protein produced by the body. The murine model (oim) exists as a natural mutation of this protein, converting its heterotrimeric structure of two Col1a1 molecules and a single Col1a2 molecule into homotrimers composed of only the former. This defect impacts bone mechanical integrity, greatly weakening their structure. Femurs from male wild type (WT), heterozygous (oim/+), and homozygous (oim/oim) mice, all at 12 weeks of age, were assessed using assays at multiple length scales with minimal sample processing to ensure a near-physiological state. Atomic force microscopy (AFM) demonstrated detectable differences in the organization of collagen at the nanometer scale that may partially attribute to alterations in material and structural behavior obtained through mechanical testing and reference point indentation (RPI). Changes in geometric and chemical structure through the use of µ-Computed Tomography and Raman spectroscopy respectively indicate a smaller, brittle phenotype caused by oim. Changes within the periodic D-spacing of collagen point towards a reduced mineral nucleation site, supported by reduced mineral crystallinity, resulting in altered material and structural behavior in oim/oim mice. Multi-scale analyses of this nature offer much in assessing how molecular changes can compound to create a degraded, brittle phenotype.
792

The adsorption of thiophenol on gold - a spectroelectrochemical study

Holze, Rudolf 24 February 2016 (has links)
The adsorbate formed by adsorption of thiophenol on a polycrystalline gold electrode and brought into contact with aqueous solutions of 1 M HClO4 and 0.1 M KClO4 has been studied using cyclic voltammetry and surface-enhanced Raman spectroscopy. A strong adsorption is deduced from observations made using cyclic voltammetry. From the SER spectra, interactions of thiophenol with the gold surface via a gold–sulfur bond with the aromatic ring pointing away from the surface is concluded for both electrolyte solutions. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
793

Instrument Development and Application for Qualitative and Quantitative Sample Analyses Using Infrared and Raman Spectroscopies

Damin, Craig Anthony 04 December 2013 (has links)
No description available.
794

Study of the Optical Properties of sp2-Hybridized Boron Nitride

Antunez de Mayolo, Eduardo January 2014 (has links)
Nitride-based semiconductor materials make it possible to fabricate optoelectronic devices that operate in the whole electromagnetic range, since the band gaps of these compounds can be modified by doping. Among these materials, the sp2-hybridized boron nitride has properties that make it a potential candidate for integration in devices operating in the short-wavelength limit, under harsh environment conditions, due to the strength of the B-N bond.  Nevertheless, this binary compound has been the less studied material among the nitrides, due to the lack of complete control on the growth process. This thesis is focused on the study of the optical properties of sp2-hybridized boron nitride grown by hot-wall chemical vapor deposition (CVD) method, at the Department of Physics, Chemistry and Biology, at Linköping University, Sweden. The samples received for this study were grown on c-plane aluminum nitride as the buffer layer, which in turn was grown by nitridation on c- plane oriented sapphire, as the substrate material. The first objective of the research presented in this thesis was the development of a suitable ellipsometry model in a spectral region ranging from the infrared to the ultraviolet zones of the electromagnetic spectrum, with the aim of obtaining in the process optical properties such as the index of refraction, the energy of the fundamental electronic interband transition, the frequencies for the optical vibrational modes of the crystal lattice, as well as their broadenings, and the numerical values of the dielectric constants; and on the other hand, structural parameters such as the layers thicknesses, and examine the possibility of the presence of roughness or porosity on the boron nitride layer, which may affect the optical properties, by incorporating their effects into the model. The determination of these parameters, and their relation with the growth process, is important for the future adequate design of heterostructure-based devices that incorporate this material. In particular, emphasis has been put on the modeling of the polar lattice resonance contributions, with the TO- LO model, by using infrared spectroscopic ellipsometry as the characterization technique to study the phonon behavior, in the aforementioned spectral region, of the boron nitride. On the other hand, spectroscopic ellipsometry in the visible-ultraviolet spectral range was used to study the behavior of the material, by combining a Cauchy model, including an Urbach tail for the absorption edge, and a Lorentz oscillator in order to account for the absorption in the material in the UV zone. This first step on the research project was carried out at Linköping University.  The second objective in the research project was to carry out additional studies on the samples received, in order to complement the information provided by the ellipsometry model and to improve the model itself, provided that it was possible. The characterization techniques used were X-ray diffraction, which made it possible to confirm that in fact boron nitride was present in the samples studied, and made it possible to verify the crystalline quality of the aforementioned samples, and in turn relate it to the quality of the ellipsometry spectra previously obtained; the Raman spectroscopy made it possible to further verify and compare the crystalline qualities of the samples received, as well as to obtain the frequency for the Raman active B-N stretching vibration in the basal plane, and to compare this value with that corresponding to the bulk sp2-boron nitride; scanning electron microscopy made it possible to observe the rough surface morphologies of the samples and thus relate them to some of the conclusions derived from the ellipsometry model; and finally cathodoluminescence measurements carried out at low temperature (4 K) allowed to obtain a broad band emission, on all the samples studied, which could be related to native defects inside the boron nitride layers, i.e., boron vacancies. Nevertheless, no trace of a free carrier recombination was observed. Considering that the hexagonal-boron nitride is nowadays considered to be a direct band gap semiconductor, it may be indirectly concluded, in principle, that the dominant phase present in the samples studied was the rhombohedral polytype. Moreover, it can be tentatively concluded that the lack of an observable interband recombination may be due to the indirect band gap nature of the rhombohedral phase of the boron nitride. Spectroscopic ellipsometry does not give a definite answer regarding this issue either, because the samples analyzed were crystalline by nature, thus not being possible to use mathematical expressions for the dielectric function models that incorporate the band gap value as a fitting parameter. Therefore, the nature of the band gap emission in the rhombohedral phase of the boron nitride is still an open research question. On the other hand, luminescent emissions originating from radiative excitonic recombinations were not observed in the cathodoluminescence spectra. This second step of the project was carried out at the Leroy Eyring Center for Solid State Science at Arizona State University.
795

Advanced techniques in Raman tweezers microspectroscopy for applications in biomedicine

Jess, Phillip R. T. January 2007 (has links)
This thesis investigates the use of Raman tweezers microspectroscopy to interrogate the biochemistry of single biological cells. Raman tweezers microspectroscopy is a powerful technique, which combines traditional Raman microspectroscopy and optical trapping, allowing the manipulation and environmental isolation of a biological cell of interest whilst simultaneously probing its biochemistry gleaning a wealth of pertinent information. The studies carried out in this thesis can be split into two broad categories: firstly, the exploitation of Raman tweezers microspectroscopy to study biological cells and secondly developments to the Raman tweezers microspectroscopy technique that extend its capabilities and the range of samples that can be studied. In the application of Raman tweezers, the stacking and interrogation of multiple cells is reported allowing a rapid representative Raman signal to be recorded from a small cell population with improved signal to noise. Also demonstrated is the ability of Raman spectroscopy to identify and grade the development of Human Papillomavirus induced cervical neoplasia with sensitivities of up to 96 %. These studies demonstrate the potential of Raman spectroscopy to study biological cells but it was noted that the traditional Raman tweezers system struggled to manipulate large cells thus a decoupled Raman tweezers microspectroscopy system is presented where a dual beam fibre optical trap is used to perform the trapping function and a separate Raman probe is introduced to probe the biochemical nature of the trapped cell. This development allowed the trapping and examination of very large cells whilst opening up the possibility of creating Raman maps of trapped objects. Raman tweezers microspectroscopy could potentially become an important clinical diagnostic and biological monitoring tool but is held back by the long signal integration times required due to the weak nature of Raman scattering. The final study presented in this thesis examines the potential of wavelength modulated Raman spectroscopy to improve signal to noise ratios and reduce integration times. All these studies aim to demonstrate the potential and extend the performance of Raman tweezers microspectroscopy.
796

Analytical method development for structural studies of pharmaceutical and related materials in solution and solid state : an investigation of the solid forms and mechanisms of formation of cocrystal systems using vibrational spectroscopic and X-ray diffraction techniques

Elbagerma, Mohamed A. January 2010 (has links)
Analysis of the molecular speciation of organic compounds in solution is essential for the understanding of ionic complexation. The Raman spectroscopic technique was chosen for this purpose because it allows the identification of compounds in different states and it can give information about the molecular geometry from the analysis of the vibrational spectra. In this research the ionisation steps of relevant pharmaceutical material have been studied by means of potentiometry coupled with Raman spectroscopy; the protonation and deprotonation behaviour of the molecules were studied in different pH regions. The abundance of the different species in the Raman spectra of aqueous salicylic acid, paracetamol, citric acid and salicylaldoxime have been identified, characterised and confirmed by numerical treatment of the observed spectral data using a multiwavelength curve-fitting program. The non-destructive nature of the Raman spectroscopic technique and the success of the application of the multiwavelength curve-fitting program demonstrated in this work have offered a new dimension for the rapid identification and characterisation of pharmaceuticals in solution and have indicated the direction of further research. The work also covers the formation of novel cocrystal systems with pharmaceutically relevant materials. The existence of new cocrystals of salicylic acid-nicotinic acid, DLphenylalanine , 6-hydroxynicotinic acid, and 3,4-dihydroxybenzoic acid with oxalic acid have been identified from stoichiometric mixtures using combined techniques of Raman spectroscopy (dispersive and transmission TRS), X-ray powder diffraction and thermal analysis. Raman spectroscopy has been used to demonstrate a number of important aspects regarding the nature of the molecular interactions in the cocrystal. Cocrystals of salicylic acid - benzamide, citric acid-paracetamol and citric acid -benzamide have been identified with similar analytical approaches and structurally characterised in detail with single crystal X-ray diffraction. From these studies the high selectivity and direct micro sampling of Raman spectroscopy make it possible to identify spectral contributions from each chemical constituent by a peak wavenumber comparison of single-component spectra (API and guest individually) and the two- component sample material (API/guest), thus allowing a direct assessment of cocrystal formation to be made. Correlation of information from Raman spectra have been made to the X-ray diffraction and thermal analysis results. Transmission Raman Spectroscopy has been applied to the study cocrystals for the first time. Identification of new phases of analysis of the low wavenumber Raman bands is demonstrated to be a key advantage of the TRS technique.
797

Structural studies of PVC gels by Raman spectroscopy

Jackson, Richard Simon January 1986 (has links)
No description available.
798

Investigation of resonant Raman scattering in type II GaAs/A1As superlattices

Choi, Hyun-jin January 2001 (has links)
No description available.
799

Process-induced disorder of pharmaceutical materials : Mechanisms and quantification of disorder

Pazesh, Samaneh January 2017 (has links)
One of the most important prerequisites in the drug development is to attain a reproducible and robust product in terms of its nature, and its chemical and physical properties. This can be challenging, since the crystalline form of drugs and excipients can be directly transformed into the amorphous one during normal pharmaceutical processing, referred to as process-induced amorphisation or process-induced disorder. The intention of this thesis was to address the mechanisms causing disorder during powder flow and milling and, in association with this, to evaluate, the ability of Raman spectroscopy and atomic force microscopy (AFM) to quantify and characterize process-induced disorder. The amorphisation mechanisms were controlled by stress energy distribution during processing, which in turn was regulated by a series of process parameters. Compression and shearing stress caused by sliding were stress types that acted on the particles during powder flow and ball milling process. However, sliding was the most important inter-particulate contact process giving rise to amorphisation and the transformation was proposed to be caused by vitrification. The plastic stiffness and elastic stiffness of the milling-induced particles were similar to a two-state particle model, however the moisture sorption characteristics of these particles were different. Thus the milled particles could not be described solely by a two-state particle model with amorphous and crystalline domains.  Raman spectroscopy proved to be an appropriate and effective technique in the quantification of the apparent amorphous content of milled lactose powder. The disordered content below 1% could be quantified with Raman spectroscopy. AFM was a useful approach to characterize disorder on the particle surfaces. In summary, this thesis has provided insight into the mechanisms involved in process-induced amorphisation of pharmaceutical powders and presented new approaches for quantification and characterization of disordered content by Raman spectroscopy and atomic force microscopy.
800

Étude des mécanismes de croissance des nanotubes de carbone monofeuillet par spectroscopie Raman in situ / Mechanism of Single-Walled Carbon Nanotube growth studied by in situ Raman measurements

Picher, Matthieu 13 July 2010 (has links)
Ce travail de thèse consiste en une étude des mécanismes de croissance des nanotubes de carbone monofeuillets par spectroscopie Raman in situ. La première partie de ce travail est consacrée à la mise en évidence des limites en température et en pression partielle de précurseur carboné du domaine de croissance des nanotubes de carbone monofeuillets. L’atout principal de la spectroscopie Raman in situ étant de pouvoir corréler informations structurales et cinétiques, cette approche a aussi permis d'étudier l'influence des principaux paramètres de synthèse (T, P, nature du précurseur carboné et du catalyseur) sur les cinétiques de croissance et de désactivation, ainsi que sur la nature et la quantité des espèces carbonées désordonnées produites. Enfin, l’influence de la température et de la pression partielle de précurseur sur le diamètre des nanotubes formés a également été étudiée. Ce travail a finalement conduit à la mise en évidence de plusieurs processus élémentaires impliqués dans : l’activation, la croissance, la désactivation, la qualité structurale, la pureté et la sélectivité en diamètre des nanotubes. / This work presents a study of the Single-Walled Carbon Nanotubes growth mechanisms by in situ Raman measurements. The first part of the manuscript is devoted to the determination of the temperature and precursor partial pressure limits of the Single-Walled Carbon Nanotubes growth domain. Furthermore, in situ Raman spectroscopy allows to correlate structural information and kinetics: this approach permits to study the influence of the main synthesis parameters (T, P, nature of the carbon precursor and of the catalyst) on the growth and deactivation kinetics, and on the nature and the quantity of disordered carbon species synthesized. Lastly, a study on the temperature and precursor partial pressure effects on the nanotubes diameters is reported. All the data collected have finally led to a discussion about the elementary processes involved in: activation, growth, deactivation, structural quality, purity and diameter selectivity of Single-Walled Carbon Nanotubes.

Page generated in 0.0471 seconds