• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Code provisions and practical design examples of hooked bar anchorage

Kim, Young Hye 2009 August 1900 (has links)
In structural concrete, hooked bars are used to shorten anchorage length when the requirements for straight bar anchorage cannot be provided within the available dimensions of elements. The objective of this study was to provide an overview of hooked bar anchorage. Design examples and structural details are based on Building code requirements for structural concrete (ACI 318-08) and commentary. Examples of standard hooks in exterior beam-column joint and hooked bar anchorage details for reinforced concrete beam-SRC column joints are discussed. The general behavior of anchorage of hooked reinforcing bars is summarized from a review of previous studies. Then, design requirements for the development length of standard hook are discussed and used in an example. An example of the use of hooked bars in reinforced concrete beam-SRC column joint is provided. Four options for short development length are presented and compared: Adding more reinforcement, welding bars, confinement by steel column flanges, and anchorage by plate welded between flanges. / text
2

FE investigation of failure modes at the soffit of a steel plated RC beam

Khan, Mohammad Arsalan January 2014 (has links)
In recent decades, a significant research has been carried out towards understanding the behaviour of plated beam. Initially designed to achieve a desired capacity, the plated beams prematurely fail in undesirable modes of failure, such as debonding and peeling. The uncertainty related with such modes of failure poses a real challenge towards quantifying them. This field is far from being clearly understood. Therefore, an attempt is made in this thesis to accurately predict the behaviour of adhesively plated beams.
3

BEHAVIOR OF RC BEAMS STRENGTHENED IN FLEXURE WITH SPLICED CFRP ROD PANELS

Jawdhari, Akram Rasheed 01 January 2016 (has links)
FRP laminates and fabrics, used as an externally bonded reinforcement (EBR) to strengthen or repair concrete members, have proven to be an economical retrofitting method. However, when used to strengthen long-span members or members with limited access, the labor and equipment demands may negate the benefits of using continuous EBR FRP. Recently, CFRP rod panels (CRPs) have been developed and deployed to overcome the aforementioned limitations. Each CRP is made of several small diameter CFRP rods placed at discrete spacing. To fulfill the strengthening length, CRP’s are spliced together and made continuous by means of overlaps (or finger joints). In this doctoral dissertation, the effectiveness of spliced CRPs as flexural strengthening reinforcement for RC members was investigated by experimental, analytical and numerical methods. The experimental research includes laboratory tests on (1) RC beams under four-point bending and (2) double-lap shear concrete specimens. The first set of tests examines the behavior of concrete members strengthened with spliced CRPs. Several beams were fabricated and tested, including: (a) unstrengthened, (b) strengthened with spliced CRPs, (c) strengthened with full-length CRPs, and (d) strengthened with full-length and spliced CFRP laminates. The double-lap shear tests serve to characterize the development length and bond strength of two commonly used CRPs. Several small-scale CRPs, with variable bond lengths, were tested to arrive to an accurate estimation of development length and bond strength. Several other specimens were additionally tested to preliminarily examine the effects of bond width and rod spacing. A 3D nonlinear finite element simulation was utilized to further study the response of CRP strengthened RC beams, by extracting essential data, that couldn’t be measured in the experimental tests. Additionally, analytical tools were added to investigate the behavior of tested bond and beam specimens. The first tool complements the double-lap shear tests, and provides mathematical terms for important characteristics of the CRP/concrete bond interface. The second tool investigates concrete cover separation failure, which was observed in the beam testing, for RC beams strengthened with full-length and spliced CRPs.

Page generated in 0.058 seconds