• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Congestion Control for Adaptive Satellite Communication Systems with Intelligent Systems

Vallamsundar, Banupriya January 2007 (has links)
With the advent of life critical and real-time services such as remote operations over satellite, e-health etc, providing the guaranteed minimum level of services at every ground terminal of the satellite communication system has gained utmost priority. Ground terminals and the hub are not equipped with the required intelligence to predict and react to inclement and dynamic weather conditions on its own. The focus of this thesis is to develop intelligent algorithms that would aid in adaptive management of the quality of service at the ground terminal and the gateway level. This is done to adapt both the ground terminal and gateway to changing weather conditions and to attempt to maintain a steady throughput level and Quality of Service (QoS) requirements on queue delay, jitter, and probability of loss of packets. The existing satellite system employs the First-In-First-Out routing algorithm to control congestion in their networks. This mechanism is not equipped with adequate ability to contend with changing link capacities, a common result due to bad weather and faults and to provide different levels of prioritized service to the customers that satisfies QoS requirements. This research proposes to use the reported strength of fuzzy logic in controlling highly non-linear and complex system such as the satellite communication network. The proposed fuzzy based model when integrated into the satellite gateway provides the needed robustness to the ground terminals to comprehend with varying levels of traffic and dynamic impacts of weather.
2

Congestion Control for Adaptive Satellite Communication Systems with Intelligent Systems

Vallamsundar, Banupriya January 2007 (has links)
With the advent of life critical and real-time services such as remote operations over satellite, e-health etc, providing the guaranteed minimum level of services at every ground terminal of the satellite communication system has gained utmost priority. Ground terminals and the hub are not equipped with the required intelligence to predict and react to inclement and dynamic weather conditions on its own. The focus of this thesis is to develop intelligent algorithms that would aid in adaptive management of the quality of service at the ground terminal and the gateway level. This is done to adapt both the ground terminal and gateway to changing weather conditions and to attempt to maintain a steady throughput level and Quality of Service (QoS) requirements on queue delay, jitter, and probability of loss of packets. The existing satellite system employs the First-In-First-Out routing algorithm to control congestion in their networks. This mechanism is not equipped with adequate ability to contend with changing link capacities, a common result due to bad weather and faults and to provide different levels of prioritized service to the customers that satisfies QoS requirements. This research proposes to use the reported strength of fuzzy logic in controlling highly non-linear and complex system such as the satellite communication network. The proposed fuzzy based model when integrated into the satellite gateway provides the needed robustness to the ground terminals to comprehend with varying levels of traffic and dynamic impacts of weather.
3

Online Optimization Of RED Routers

Vaidya, Rahul 03 1900 (has links) (PDF)
No description available.

Page generated in 0.0438 seconds