• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 425
  • 48
  • 39
  • 32
  • 25
  • 15
  • 13
  • 12
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 737
  • 200
  • 187
  • 158
  • 142
  • 96
  • 83
  • 66
  • 65
  • 59
  • 56
  • 55
  • 52
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Functional changes and differential cell death of retinal ganglion cells after injury /

Li, Suk-yee, January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2007. / Also available online.
182

The use of extraretinal information to compensate for self-movement

Blohm, Gunnar 19 October 2004 (has links)
It is essential for the brain to keep track of self-movement in order to establish a stable percept of the environment. The major source of information about self-movement is vision. However, non visual (extraretinal) information can also contribute to the sense of motion. This thesis investigated the role of extraretinal signals to account for self-generated motion in the case of eye movements. The interaction of two types of eye movements, i.e. smooth pursuit and saccades, was used to investigate the system's capacity to keep track of self-motion. This work focused in particular on the ability of the saccadic system to account for smooth pursuit eye movements in darkness. A detailed analysis of the saccade metrics allowed the identification of a novel neural mechanism for smooth eye movement integration. As a result, the saccadic system could compensate for smooth eye displacements and thus was able to ensure space constancy across different eye movements. In addition to the experimental approach of this thesis, a mathematical model was developed that described all current findings.
183

Investigation of the Role of Muller Glia-Derived Dickkopf3 (Dkk3) during Retinal Degeneration

Nakamura, Rei 18 November 2009 (has links)
Retinal degeneration is characterized by the irreversible loss of photoreceptors. A key research question is the identification and characterization of photoreceptor protective factors that prevent or delay vision loss. The Wnt pathway is a critical cellular communication pathway involved in development and diseases of the central nervous system (CNS). Recently, we discovered that multiple components of the Wnt pathway were differentially expressed in the rd1 mouse model of retinal degeneration. One of the most highly upregulated genes was Dickkopf3 (Dkk3), a secreted Wnt pathway protein of unknown function. Additionally, we demonstrated that Wnt signaling is neuroprotective in primary retinal culture (Yi et al., 2007). These data led to the hypothesis that Dkk3 is a regulator of Wnt-mediated neuroprotection during retinal degeneration. The role of Dkk3 in the retina and its activity in the Wnt pathway was identified in this dissertation project using a series of biochemical, molecular and cell biology methodologies. First, Dkk3 was shown to be expressed and secreted from Muller glia in mouse retinal tissue and primary Muller glia culture. I then demonstrated that Muller glia are a Wnt-responsive cell type and that Dkk3 potentiates Wnt3a-mediated signaling. Interestingly, the latter effect was not observed in other cell types in the retina such as retinal ganglion cells and retinal pigmented epithelial cells. Thus, Dkk3 may act on Muller glia to positively modulate Wnt signaling during retinal degeneration, which could potentially amplify the neuroprotective activity of the Wnt pathway. Next, the role of Dkk3 in cellular viability was explored. HEK293 cells stably expressing Dkk3 were shown to be significantly protected from staurosporine-induced apoptosis compared with vector control. This result suggests that Dkk3 may mediate a direct pro-survival effect onto photoreceptors during retinal degeneration. Protein interaction experiments demonstrated that Dkk3 formed a complex with the single pass transmembrane proteins Krm1 and Krm2 in the membrane, potentially in the endoplasmic reticulum (ER). Furthermore, Wnt signaling luciferase reporter assays demonstrated that Krm2, but not Krm1, abolished Dkk3-mediated Wnt3a potentiation. These data suggest that Dkk3 modulates Wnt signaling by antagonizing Dkk1-Krm dependent Wnt inhibition. Further studies will determine whether this activity is sufficient for the potentiation of Wnt signaling by Dkk3. Lastly, co-immunoprecipitation followed by mass spectrometry analysis was used to identify a novel interacting protein of Dkk3. Dkk3 was shown to interact with glucose response protein 78 (GRP78), an ER-resident chaperone. This suggested that Dkk3 protein is part of the unfolded protein response through GRP78 in the ER. In conclusion, these studies identified two novel functions of Dkk3 in regulating Wnt signaling pathway and cellular viability and suggest a physiological role for Dkk3 and Wnt signaling during retinal degeneration. Future studies will explore the significance of Dkk3-Krm and Dkk3-GRP78 interactions in the retina. Further, elucidation of the regulation of Dkk3 and other Wnt ligands in the ER and the consequence of ER stress on the biological activity of Wnt signaling will provide a better understanding of the role of the Wnt pathway during retinal degeneration.
184

The use of extraretinal information to compensate for self-movement

Blohm, Gunnar 19 October 2004 (has links)
It is essential for the brain to keep track of self-movement in order to establish a stable percept of the environment. The major source of information about self-movement is vision. However, non visual (extraretinal) information can also contribute to the sense of motion. This thesis investigated the role of extraretinal signals to account for self-generated motion in the case of eye movements. The interaction of two types of eye movements, i.e. smooth pursuit and saccades, was used to investigate the system's capacity to keep track of self-motion. This work focused in particular on the ability of the saccadic system to account for smooth pursuit eye movements in darkness. A detailed analysis of the saccade metrics allowed the identification of a novel neural mechanism for smooth eye movement integration. As a result, the saccadic system could compensate for smooth eye displacements and thus was able to ensure space constancy across different eye movements. In addition to the experimental approach of this thesis, a mathematical model was developed that described all current findings.
185

Multi-user retinal displays with two components. New degrees of freedom.

Biverot, Hans January 2001 (has links)
No description available.
186

Characterization of RPGR Variants and Their Role in Inherited Retinal Degeneration

Wright, Rachel 2011 August 1900 (has links)
Retinitis Pigmentosa (RP) refers to a group of inherited retinal dystrophies resulting from progressive photoreceptor degeneration and accumulation of intra-retinal pigment-like deposits. X-linked forms of RP are frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. The RPGR transcript undergoes complex alternative splicing to express both constitutive (RPGR^ex1-19) and RPGR^ORF15 variants. Although RPGR is thought to play a role in ciliary function, little is known about the physiological significance of expressing two distinct groups of variants. This study compares Rpgr^ex1-19 and Rpgr^ORF15 expression in developing photoreceptors using immunoblot analysis and immunohistochemistry, assesses ciliary affinity in adult photoreceptors by protein fractionation, examines Rpgr function in transgenic mouse models and identifies a novel Rpgr^ORF15 binding partner using a yeast two-hybrid screen. Our data reveal that Rpgr expression undergoes dynamic temporal regulation during retinal development and indicates variability in ciliary localization of Rpgr variants in adult photoreceptors. Utilization of distinct Rpgr variants during stages of photoreceptor development suggests independent roles. Further examination of Rpgr function using transgenic mouse models over-expressing either the Rpgr^ex1-19 or Rpgr^ORF15 variant reveals that despite normal ciliary localization, an excess of RPGR^ex1-19 results in atypical accumulation of Rpgr in photoreceptor outer segments, abnormal photoreceptor morphology and severe retinal degeneration. The data indicate that the constitutive variant cannot substitute for Rpgr function in photoreceptors and suggest that proper maintenance of the Rpgr isoform ratio is critical to photoreceptor viability. Using mouse retinal cDNA in a yeast two-hybrid screen with the C-terminus of the Rpgr^ORF15 variant, we identified a novel variant of whirlin as an interacting partner. Mutations in whirlin result in Usher syndrome, a disorder characterized by hearing loss and RP. RT-PCR and immunoblot analysis were used to confirm the presence of selected candidate partners in the retina and interaction was confirmed by pull-down assays and co-immunoprecipitation from retinal homogenate. Immunohistochemistry showed co-localization of RPGR and whirlin within photoreceptors and identified isoform specific localization of whirlin. These findings indicate that whirlin binds Rpgr^ORF15 and that this novel isoform may be required for photoreceptor function, thus providing a potential mechanism for the RP phenotype observed in Usher syndrome.
187

Studies on the Blood-Retinal Barrier After Cryoretinopexy with Vitreous Fluorophotometry

ANDO, FUMITAKA, KATO, MIYOKO 03 1900 (has links)
No description available.
188

Characterization of Retinal Progenitor Cells : Focus on Proliferation and the GABAA Receptor System

Ring, Henrik January 2012 (has links)
One strategy to repair an injured or degenerated retina is to stimulate the replacement of damaged or dead neurons with cells derived from endogenous stem- or progenitor cells. A successful strategy requires knowledge about how the proliferation and differentiation of the endogenous cells are regulated. In particular, this knowledge will be important in the establishment of protocols that produce sufficient numbers of specific neurons. The main aim of this thesis was to find and characterise factors regulating the proliferation and differentiation of retinal progenitor cells (RPCs) and hence, contribute to the knowledge of how to use progenitor cells for retinal repair.    The major result in this thesis is that GABA contributes to and maintains RPC proliferation. Inhibition of GABAA receptors decreases the proliferation of non-pigmented ciliary epithelial (NPE) cells and RPCs in the intact retina. We propose that this effect is mediated through changes in the membrane potential and voltage-gated calcium channels, which in turn regulate components of the cell cycle. Furthermore, we show that one of the endogenous RPC sources, the Müller cells, consists of two subpopulations based on Pax2 expression. This is interesting because Pax2 may suppress the neurogenic potential, characterised by de-differentiation and proliferation, in Müller cells. Finally, we show that over-expression of FoxN4 induces differentiation-associated transcription factors in the developing chick retina. However, FoxN4 over-expression did not trigger differentiation of NPE cells. These results indicate that the intrinsic properties of the RPCs are determinant for FoxN4-induced differentiation. The results presented in this thesis advance our understanding of how specific cells may be generated from different sources of RPCs. Our results show that the different sources are highly diverse in their potential to proliferate and produce neurons. GABA, Pax2 and FoxN4 may be factors to consider when designing strategies for retinal repair. However, the results indicate that the specific responses to these factors are highly associated with the specific properties of the progenitor cells. / <p>Doctor of Philosophy <strong>(Faculty of Medicine)</strong></p>
189

Investigation into the pathogenesis of retinal dysplasia in the miniature schnauzer and English springer spaniel dog

Bauer, Bianca Susanne 05 February 2009
Retinal dysplasia has been documented in many breeds of dogs. It has recently been hypothesized that Miniature Schnauzer dogs affected with retinal dysplasia and associated persistent hyperplastic primary vitreous have a decreased amount of Tfam and several mtDNA transcripts in the retina and RPE. Affected dogs were also hypothesized to have a decrease in leukocyte mtDNA compared to normal dogs. Additionally, using electron microscopy, these dogs were hypothesized to having decreased mitochondrial numbers and size with altered morphology in multiple tissues, including neutrophils. Due to these recent discoveries in this breed it has been proposed that retinal dysplasia could be the result of an altered energy supply to the retina and RPE. The objective of this study was to further investigate the pathogenesis of retinal dysplasia in the Miniature Schnauzer and English Springer Spaniel dog.<p> The hypothesis of an altered Tfam gene sequence in affected Miniature Schnauzer dogs leading to a decreased amount of Tfam transcript in the retina and RPE was tested by amplifying, cloning and sequencing the coding, 5 and 3non-coding regions, and intron 1 of the Tfam gene from affected and normal Miniature Schnauzer dogs. Using transmission electron microscopy, affected and normal lymphocyte mitochondria were also objectively measured and quantified in this breed along with mitochondrial morphology assessment. In the English Springer Spaniel dog, the hypothesis of a decreased amount of leukocyte mtDNA in affected dogs was tested using real-time PCR. In addition, using transmission electron microscopy, affected and normal lymphocyte mitochondria were objectively measured and quantified in this breed with mitochondrial morphology assessment.<p> Sequencing of the particular regions of the Miniature Schnauzer Tfam gene revealed no significant nucleotide changes between affected and normal dogs. Evaluation of lymphocyte mitochondrial size, number and morphology also revealed no significant differences between the two groups. In the English Springer Spaniel dog a relative decrease in leukocyte mtDNA did not exist in dogs affected with retinal dysplasia. Furthermore, evaluation of affected English Springer Spaniel dog lymphocyte mitochondria revealed no significant differences in mitochondrial number, surface area or morphology when compared to normal English Springer Spaniel dogs.<p> To conclude, we failed to demonstrate a mutation in the areas of the Tfam gene sequenced in Miniature Schnauzers affected with retinal dysplasia and associated persistent hyperplastic primary vitreous. In contrast to previous findings of decreased leukocyte mtDNA in the affected Miniature Schnauzer dog, no evidence was found to support a relative decrease in leukocyte mtDNA in English Springer Spaniel dogs affected with retinal dysplasia. Furthermore, the hypothesis of altered mitochondrial size, number and morphology in affected dogs is not supported by this study. Further evaluation of mitochondria, mtDNA and mitochondrial gene expression within age-matched retina and RPE of Miniature Schnauzer and English Springer Spaniel dogs is necessary to determine if mitochondria and altered energy supply play a role in the pathogenesis of retinal dysplasia in these breeds.
190

Differential changes in gene expression in cultured human retinal pigment epithelial cells after beta-amyloid stimulation

Kurji, Khaliq 05 1900 (has links)
Age related macular degeneration (AMD) is the most common cause of irreversible vision loss in the elderly. At present, there are an estimated one million people in Canada with some form of AMD and this number is expected to double to two million by 2031. These estimates are sobering, and it is predicted that costs for treatment and care of individuals who suffer vision loss from AMD will have significant impact on the social and public health systems in Canada in the next two decades. There are treatments to slow the progression of vision loss, but unfortunately, there are currently no cures available for AMD. In order to develop effective second generation therapies and cures, further insights into how and why AMD develops are greatly needed. Recent studies have provided novel insights into the role of inflammation in the pathogenesis of AMD. Inflammation, or swelling of the retinal tissues, causes harmful processes that promote macular degeneration. The proposed studies will focus on the triggers of inflammation in the retina. It is hypothesized that macular degeneration may be slowed or stopped by eliminating the molecules that cause inflammation in the retina. This study will focus on amyloid beta (Aβ), a toxic molecule that has been implicated in retinal inflammation, and the role that it may play in gene expression of the retinal pigment epithelial cell. Amyloid beta is a well studied peptide in another age related disorder, Alzheimer’s disease. It is the major extracellular deposit in Alzheimer’s disease plaques, and has recently been discovered as a component of drusen, the hallmark extracellular deposits in the retina of patients with the ‘dry’ form of AMD. These studies will allow the development of new treatment regimens that target retinal inflammation and thus minimize the processes that ‘trigger’ the onset of macular degeneration.

Page generated in 0.0168 seconds