• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theory and Applications of Microstrip/Negative-refractive-index Transmission Line (MS/NRI-TL) Coupled-line Couplers

Islam, Rubaiyat 09 January 2012 (has links)
The electromagnetic coupling of a microstrip transmission line (MS-TL) to a metamaterial backward wave Negative-Refractive-Index transmission line (NRI-TL) is the primary investigation of this dissertation. The coupling of forward waves in the MS-TL to the backward waves in the NRI-TL results in the formation of complex modes, characterized by simultaneous phase progression and attenuation along the lossless lines. Through network-theoretic considerations, we investigate the properties of these modes in the complex-frequency plane of the Laplace domain to help unravel the confusion that has existed in the literature regarding the independent excitation of a pair of conjugate complex modes. We show that it is possible to arbitrarily suppress one of the modes over a finite bandwidth and completely eliminate it at a discrete set of frequencies using proper source and load impedances. Hence we use conjugate modes with independent amplitudes in our eigenmode expansion when we analyse various coupling configurations between the two types of lines (MS/NRI-TL coupler). We derive approximate closed-form expression for the scattering parameters of the MS/NRI-TL coupler and these are complemented by design charts that allow the synthesis of a wide range of specifications. Moreover, these expressions reveal that such couplers allow for arbitrary backward coupling levels along with very high-isolation when they are made half a guided wavelength long. The MS/NRI-TL coupler offers some interesting applications which we highlight through the design and testing of a 3-dB power splitter, a high-directivity signal monitor and a compact corporate power divider. We have included design, simulation and experimental data for the fabricated prototypes exhibiting good agreement and thereby justifying the theory that has been developed in this work to explain the coupling between a right-handed MS-TL and a left-handed NRI-TL.
2

Theory and Applications of Microstrip/Negative-refractive-index Transmission Line (MS/NRI-TL) Coupled-line Couplers

Islam, Rubaiyat 09 January 2012 (has links)
The electromagnetic coupling of a microstrip transmission line (MS-TL) to a metamaterial backward wave Negative-Refractive-Index transmission line (NRI-TL) is the primary investigation of this dissertation. The coupling of forward waves in the MS-TL to the backward waves in the NRI-TL results in the formation of complex modes, characterized by simultaneous phase progression and attenuation along the lossless lines. Through network-theoretic considerations, we investigate the properties of these modes in the complex-frequency plane of the Laplace domain to help unravel the confusion that has existed in the literature regarding the independent excitation of a pair of conjugate complex modes. We show that it is possible to arbitrarily suppress one of the modes over a finite bandwidth and completely eliminate it at a discrete set of frequencies using proper source and load impedances. Hence we use conjugate modes with independent amplitudes in our eigenmode expansion when we analyse various coupling configurations between the two types of lines (MS/NRI-TL coupler). We derive approximate closed-form expression for the scattering parameters of the MS/NRI-TL coupler and these are complemented by design charts that allow the synthesis of a wide range of specifications. Moreover, these expressions reveal that such couplers allow for arbitrary backward coupling levels along with very high-isolation when they are made half a guided wavelength long. The MS/NRI-TL coupler offers some interesting applications which we highlight through the design and testing of a 3-dB power splitter, a high-directivity signal monitor and a compact corporate power divider. We have included design, simulation and experimental data for the fabricated prototypes exhibiting good agreement and thereby justifying the theory that has been developed in this work to explain the coupling between a right-handed MS-TL and a left-handed NRI-TL.

Page generated in 0.0292 seconds