• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Repulsive Guidance Molecule b (RGMb) in the Developing Chick Visual Sytem

Sidhu, Nicole 26 November 2012 (has links)
Our work on RGMb demonstrates a clear and new role in the developing chick visual system. RGMb is expressed in distinct areas of the developing visual system: retinal ganglion cells (RGCs) of the retina, which are the only cells in the visual system that extend axons to the brain, as well as newly differentiated neuronal cells within the optic tectum (OT), the primary target of RGC axons. Knockdown of RGMb in RGCs at embryonic day 2 (E2) resulted in aberrant axon projection at E17, indicating that RGMb is required for axon development. Furthermore, knockdown of RGMb in the optic tectum at E5 resulted in disrupted cellular migration at E9, demonstrating that RGMb is involved in correct cell migration. Lastly, we demonstrated that RGMb binds to the Fibronectin III (3,4) domain of Neogenin, which provides a basis for determining the mechanism through which RGMb exerts its biological effects.
2

The Role of Repulsive Guidance Molecule b (RGMb) in the Developing Chick Visual Sytem

Sidhu, Nicole 26 November 2012 (has links)
Our work on RGMb demonstrates a clear and new role in the developing chick visual system. RGMb is expressed in distinct areas of the developing visual system: retinal ganglion cells (RGCs) of the retina, which are the only cells in the visual system that extend axons to the brain, as well as newly differentiated neuronal cells within the optic tectum (OT), the primary target of RGC axons. Knockdown of RGMb in RGCs at embryonic day 2 (E2) resulted in aberrant axon projection at E17, indicating that RGMb is required for axon development. Furthermore, knockdown of RGMb in the optic tectum at E5 resulted in disrupted cellular migration at E9, demonstrating that RGMb is involved in correct cell migration. Lastly, we demonstrated that RGMb binds to the Fibronectin III (3,4) domain of Neogenin, which provides a basis for determining the mechanism through which RGMb exerts its biological effects.

Page generated in 0.2434 seconds