• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 5
  • 1
  • Tagged with
  • 21
  • 11
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização de grafeno quimicamente esfoliado para aplicações em nanomedicina / Characterization of chemically exfoliated graphene for nanomedicine applications

Santos, Fabrício Aparecido dos 24 October 2017 (has links)
Esta tese descreve a esfoliação e modificação do grafeno oxidado (GO) na obtenção de grafeno em sua forma reduzida (RGO) para aplicações biomédicas, que envolve sensoriamento e biossensoriamento, além de aplicação em fototerapia. Nas aplicações em sensores, inicialmente o RGO juntamente com o surfactante aniônico Dihexadecilfosfato (DHP), foi utilizado na fabricação de filmes por drop casting em eletrodo de carbono vítreo (CGE), na detecção do hormônio Estradiol. O eletrodo modificado (RGO-DHP/CGE) foi caracterizado por voltametria cíclica e impedância de espectroscopia eletroquímica. Os resultados mostraram uma corrente de pico de oxidação irreversível em 0,6 V. Sob as condições experimentais ideais, usando a voltametria linear, o limite de detecção para este hormônio foi de 7,7 × 10-8 mol L-1. Foram fabricados também dispositivos de efeito de campo (FET) de RGO via porta líquida em eletrodos interdigitados, para a detecção de Cistatina-C, um marcador de doença renal crônica. Os filmes foram fabricados utilizando a técnica de automontagem de interação eletrostática, nos quais, como polieletrólito de carga positiva foi utilizado o RGO modificado via ligação covalente de APTES, e como polieletrólito de carga negativa, o RGO dopado com nitrogênio, através da redução via micro-ondas. Estes dispositivos apresentaram uma sensibilidade de (1,94 ± 0,29) ΔIDS(%)ngmL-1. O LD foi de 0,39 ngmL-1 e a região linear entre 5 ngmL-1 100 ngmL-1, quando utilizados em urina sintética. Avaliamos também o uso de RGO em sistemas de fototerapia, utilizando GO reduzido com NH4OH na presença de L-Glutamina (RGO-Glu), onde observamos um aumento de temperatura localizado quando o material é irradiado por um laser (808 nm). Este sistema apresentou uma boa estabilidade e baixa agregação em dispersão aquosa e em meio de cultura, devido à formação de uma corona proteica. O RGO-Glu mostrou-se mais eficiente para o aquecimento que o RGO sem a modificação, na absorção do laser em 808 nm, com valores de eficiência de conversão de energia de 63% e 50% respectivamente. Estudos utilizando célula HeLa mostram que a internalização do RGO-Glu foi mais eficiente do que o RGO sem a modificação. Estes estudos mostram a versatilidade do grafeno quimicamente esfoliado em aplicações biomédicas quando convenientemente modificado, que pode ser utilizado em diagnóstico e em terapia. / This thesis describes the exfoliation and modification of graphene oxide (GO) to obtain reduced graphene oxide (RGO), for biomedical applications, namely: (bio)sensing for diagnostics and as active material in phototherapy. For (bio)sensing applications, RGO was used in combination with the anionic surfactant Dihexadecylphosphate (DHP) in the fabrication of drop-cast thin films onto carbon glass electrode (CGE), to be used in the detection of the hormone Estradiol. The modified electrode (RGO-DHP/CGE) was characterized by cyclic voltammetry and electrochemical spectroscopy impedance (EIS). The results showed an irreversible oxidation peak current at 0.6 V. Under ideal experimental conditions, and using linear voltammetry, the detection limit obtained for this sensor was 7.7 × 10-8 mol L-1. In the second part of the study, RGO was used in the fabrication of field effect transistors (FETs) via liquid gate, and the devices were applied in the detection of Cystatin-C, a biomarker for chronic renal disease. The films were made using the electrostatic layer-by-layer technique, in which APTES-modified RGO was used as positive polyelectrolyte, whereas nitrogen-doped RGO was used as the negative species. These devices exhibited a sensitivity of (1,94 ± 0,29) ΔIDS(%)ngmL-1, whereas LD was 0,39 ng.mL-1 and the linear region of detection was between 5 ng.mL-1 100 ngmL-1 when used in synthetic urine. The studies on the use of RGO in phototherapy were carried out using NH4OH -reduced GO in the presence of L-Glutamine (RGO-Glu) for subsequent cell internalization and irradiation under an 808 nm lase line to promote hiperthermia. This system showed good stability and low aggregation in aqueous dispersions and culture medium, due to the formation of a protein corona. RGO-Glu was more efficient than the RGO without the modification in the absorption of the laser at 808 nm, resulting in an efficiency of heat generation (energy conversion efficiency) of 63% and 50% respectively. Cytotoxicity studies using HeLa cell lines revealed that the internalization of RGO-Glu was more efficient than RGO without modification. These studies show the versatility of chemically exfoliated graphene oxides for biomedical applications, including diagnosis and therapy.
2

Caracterização de grafeno quimicamente esfoliado para aplicações em nanomedicina / Characterization of chemically exfoliated graphene for nanomedicine applications

Fabrício Aparecido dos Santos 24 October 2017 (has links)
Esta tese descreve a esfoliação e modificação do grafeno oxidado (GO) na obtenção de grafeno em sua forma reduzida (RGO) para aplicações biomédicas, que envolve sensoriamento e biossensoriamento, além de aplicação em fototerapia. Nas aplicações em sensores, inicialmente o RGO juntamente com o surfactante aniônico Dihexadecilfosfato (DHP), foi utilizado na fabricação de filmes por drop casting em eletrodo de carbono vítreo (CGE), na detecção do hormônio Estradiol. O eletrodo modificado (RGO-DHP/CGE) foi caracterizado por voltametria cíclica e impedância de espectroscopia eletroquímica. Os resultados mostraram uma corrente de pico de oxidação irreversível em 0,6 V. Sob as condições experimentais ideais, usando a voltametria linear, o limite de detecção para este hormônio foi de 7,7 × 10-8 mol L-1. Foram fabricados também dispositivos de efeito de campo (FET) de RGO via porta líquida em eletrodos interdigitados, para a detecção de Cistatina-C, um marcador de doença renal crônica. Os filmes foram fabricados utilizando a técnica de automontagem de interação eletrostática, nos quais, como polieletrólito de carga positiva foi utilizado o RGO modificado via ligação covalente de APTES, e como polieletrólito de carga negativa, o RGO dopado com nitrogênio, através da redução via micro-ondas. Estes dispositivos apresentaram uma sensibilidade de (1,94 ± 0,29) ΔIDS(%)ngmL-1. O LD foi de 0,39 ngmL-1 e a região linear entre 5 ngmL-1 100 ngmL-1, quando utilizados em urina sintética. Avaliamos também o uso de RGO em sistemas de fototerapia, utilizando GO reduzido com NH4OH na presença de L-Glutamina (RGO-Glu), onde observamos um aumento de temperatura localizado quando o material é irradiado por um laser (808 nm). Este sistema apresentou uma boa estabilidade e baixa agregação em dispersão aquosa e em meio de cultura, devido à formação de uma corona proteica. O RGO-Glu mostrou-se mais eficiente para o aquecimento que o RGO sem a modificação, na absorção do laser em 808 nm, com valores de eficiência de conversão de energia de 63% e 50% respectivamente. Estudos utilizando célula HeLa mostram que a internalização do RGO-Glu foi mais eficiente do que o RGO sem a modificação. Estes estudos mostram a versatilidade do grafeno quimicamente esfoliado em aplicações biomédicas quando convenientemente modificado, que pode ser utilizado em diagnóstico e em terapia. / This thesis describes the exfoliation and modification of graphene oxide (GO) to obtain reduced graphene oxide (RGO), for biomedical applications, namely: (bio)sensing for diagnostics and as active material in phototherapy. For (bio)sensing applications, RGO was used in combination with the anionic surfactant Dihexadecylphosphate (DHP) in the fabrication of drop-cast thin films onto carbon glass electrode (CGE), to be used in the detection of the hormone Estradiol. The modified electrode (RGO-DHP/CGE) was characterized by cyclic voltammetry and electrochemical spectroscopy impedance (EIS). The results showed an irreversible oxidation peak current at 0.6 V. Under ideal experimental conditions, and using linear voltammetry, the detection limit obtained for this sensor was 7.7 × 10-8 mol L-1. In the second part of the study, RGO was used in the fabrication of field effect transistors (FETs) via liquid gate, and the devices were applied in the detection of Cystatin-C, a biomarker for chronic renal disease. The films were made using the electrostatic layer-by-layer technique, in which APTES-modified RGO was used as positive polyelectrolyte, whereas nitrogen-doped RGO was used as the negative species. These devices exhibited a sensitivity of (1,94 ± 0,29) ΔIDS(%)ngmL-1, whereas LD was 0,39 ng.mL-1 and the linear region of detection was between 5 ng.mL-1 100 ngmL-1 when used in synthetic urine. The studies on the use of RGO in phototherapy were carried out using NH4OH -reduced GO in the presence of L-Glutamine (RGO-Glu) for subsequent cell internalization and irradiation under an 808 nm lase line to promote hiperthermia. This system showed good stability and low aggregation in aqueous dispersions and culture medium, due to the formation of a protein corona. RGO-Glu was more efficient than the RGO without the modification in the absorption of the laser at 808 nm, resulting in an efficiency of heat generation (energy conversion efficiency) of 63% and 50% respectively. Cytotoxicity studies using HeLa cell lines revealed that the internalization of RGO-Glu was more efficient than RGO without modification. These studies show the versatility of chemically exfoliated graphene oxides for biomedical applications, including diagnosis and therapy.
3

REMEDIATION OF PER- AND POLYFLUOROALKYL SUBSTANCES AND COMINGLED CHLORINATED SOLVENTS USING REDUCED GRAPHENE OXIDE/NANOSCALE ZERO-VALENT IRON

Regmi, Sushmita 01 August 2022 (has links)
The lack of biodegradability of PFAS, or per- and polyfluoroalkyl substances, is due to the presence of many strong carbon-fluorine bonds. Two common PFAS that are found in the environment are perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). This work first studied an innovative pathway for PFAS removal through the adsorption of PFOA and PFOS (pre-concentrating the contaminants) by nanoscale zero-valent iron/reduced graphene oxide (rGO-nZVI) and their subsequent degradation via photocatalysis under UVC light. The GO that was later reduced in nanohybrid production was made utilizing a modified Hummer’s method. The rGO-nZVI nanohybrid was prepared for the first time via thermal reduction at high temperatures. Additionally, the nanohybrid was prepared using the wet chemistry method for comparison. LC/MS/MS analysis was conducted to determine the adsorption efficiencies for PFOA and PFOS using the nanohybrids and their successive removal under UVC light. Chlorinated hydrocarbons are another group of contaminants of concern that should be removed from the subsurface due to their harmful effects. In this study, a more complex mixture of the contaminants including PFAS and chlorinated hydrocarbons was investigated, which is usually found in the superfund and other contaminated sites. Considering the effectiveness of nZVI to remove chlorinated hydrocarbons from the subsurface, engineered nZVI coupled with rGO was utilized to enhance the removal efficiency of the mixture of contaminants, i.e., PFAS comingled with chlorinated hydrocarbons. The synthesized rGO-nZVI nanoparticle showed high adsorption efficiencies for both PFOA and PFOS, i.e., removal of 55.3%, 98.2%, and >99.9% of PFOA of 10, 1, and 0.1 mg/L, and 94.9%, 97.6%, and 85.0% of PFOS of 10, 1, and 0.1 mg/L, respectively, in 3 h. Later degradation of pre-concentrated PFAS under UVC light was also achieved. Using extracted rGO-nZVI, 55.1%, 77.6% of preconcentrated PFOS was degraded starting from 10, and 1 mg/L of initial concentrations before adsorption in the photoreactor at the end of 24 h. In comparison, 68.5% and 47.2% of PFOS and PFOA (starting from 1 mg/L each) was degraded, respectively, using rGO-nZVI directly under UVC light after 24 h. Moreover, it was found that rGO-nZVI had high adsorption capacity of 69.4% and 68.7% respectively for TCE and PFOA in a mixture of these contaminants. Under UVC irradiation, the preconcentrated mixture of TCE and PFOA were both degraded to below the detection limit in 21 h. It was also found that PFOA concentration dropped by 64.3% at 5 h and by 88.7% at 24 h by fresh rGO-nZVI in presence of 10 mg/L TCE. Short-chained PFCAs like PFHpA and PFHxA were found as the intermediates for PFOA degradation using rGO-nZVI under UVC light. Also, under UVC irradiation of a mixture of TCE and PFOA, TCE degradation was supported by the formation of intermediates during the reaction. Because of its composition, photocatalytic activity, large surface area, magnetic properties, and environmental friendliness, the thermal reduced rGO-nZVI particle demonstrated its potential to successfully remove PFAS and comingled chlorinated hydrocarbon from pre-concentration followed by degradation under UVC light. The nanohybrid is promising to be used to repair PFAS-contaminated water bodies.
4

Otimização da síntese de compósitos rGO/g-C3N4 para a fotodegradação de poluentes orgânicos empregando-se o bisfenol A como modelo / rGO/g-C3N4 composites synthesis optimization for the photodegradation of organic pollutants using bisphenol A as a model

Xavier, Chubraider 15 February 2019 (has links)
O objetivo do presente trabalho foi a otimização, via metodologia de superfície de resposta, da síntese de compósitos de nitreto de carbono grafítico e óxido de grafeno reduzido, por via úmida, para aplicação em fotodegradação de poluentes orgânicos, empregando-se como poluente-modelo o Bisfenol A (BPA) em meio aquoso e em concentrações ambientais (100 µg L-1). O nitreto de carbono foi obtido por pirólise da melamina, enquanto o óxido de grafeno reduzido foi obtido a partir do grafite por um método de Hummers modificado e posteriormente reduzido com hidrazina em refluxo após a impregnação em g-C3N4. A impregnação se baseou em auto-montagem por interação eletrostática via tratamento sonoquímico esfoliativo em pH 3,0, em que os materiais apresentam cargas opostas. Inicialmente, três fatores foram estudados para a formação dos compósitos: o teor mássico de óxido de grafite utilizado, o tempo de sonicação da mistura das suspensões dos materiais precursores esfoliados por ultrassom de ponteira e a quantidade de hidrazina utilizada para redução do óxido de grafeno. Para tanto realizou-se um planejamento inicial de dois níveis e três fatores com réplicas em todos os pontos. Após o ajuste de um modelo linear e de se determinar região ótima percorrendo-se o caminho de máxima inclinação, um Planejamento Composto Central foi utilizado para se otimizar a reação. A quantidade de hidrazina empregada não se mostrou estatisticamente significativa nos níveis estudados. As condições ótimas de síntese foram: 16% em massa de GrO, 8,5 min de sonicação da mistura. A hidrazina foi fixada em seu nível baixo (1:4 GrO em massa). A remoção do BPA chegou a aproximadamente 65% após 0,5 h de adsorção no escuro e 1 h de irradiação, utilizando-se 0,05 g L-1 do compósito. O material obtido com as condições ótimas foi aproximadamente 2,7 vezes mais ativo que o obtido com as condições encontradas na literatura. O sistema reacional apresentou baixas fotólise (3%) e adsorção no escuro (22%). Em termos texturais, o material obtido apresenta área superficial específica maior (86 m2 g-1) que a da matriz original de g-C3N4 (26 m2 g-1) sem o tratamento sonoquímico. Para o compósito otimizado, a estrutura lamelar do g-C3N4 foi preservada no compósito conforme os perfis dos difratogramas de pó. A superfície dos precursores e do compósito mostraram-se bastante puras. As análises de DRS mostraram que as propriedades de separação de carga do compósito não diferem muito do bandgap do g-C3N4 puro (2,7 eV). / The objective of this work was the optimization of the synthesis of grafitic carbon ni-tride and reduced graphene oxide composites by Response Surface Metodology for the photodegradation of organic pollutants, using bisphenol A as a model pollutant in aque-ous medium and environmental concentrations (100 µg L-1). Carbon nitride was ob-tained by pyrolysis of melamine, while the reduced graphene oxide was obtained from grafite by a modified Hummers method. The graphene oxide formed was later reduced by hydrazine in reflux after the impregnation in g-C3N4. The synthesis was based on a self-assembly via eletrostatic interaction and exfoliative sonochemical treatment at pH 3.0, condition in which the materials presented opposite charges. Initially three factors were studied for the composites fabrication: the graphite oxide mass content, the sonication period of the precursor mixture, which was exfoliated by a sonotrode and the amount of hydrazine used for reducing graphene oxide. An initial experimental design with two levels and three factors and replicas at all points was carried out. After determining a linear model and finding the optimum region along the path of steepest ascent, a Central Composite Design was performed to optmize the reaction. The amount of hydrazine employed was not statistically significant within the levels studied. The optimum conditions of syhthesis were 16% in mass of graphite oxide and 8.5 min of soni-cation of the mixture. Hydrazine was set at its low level (1:4 to GrO in mass). The BPA removal reached approximately 65% after adsorption (30 min in the dark) and 1 h of irradiation with 0.05 g L-1 composite. The obtained material according to the optimal conditions was approximately 2.7 times more active than the one obtained using the conditions found in the literature. The reaction system presented low photolysis (3%) and adsorption (22%). Texturally speaking, the obtained material had greater specific surface area (86 m2 g-1) than the original g-C3N4 matrix (26 m2 g-1). In textural terms, the g-C3N4 lamelar structure was preserved in the composite according to the powder dif-fractograms profiles. The surface of precursors and composite was quite pure. DRS analyses showed that the charge separation properties of the composite do not signifi-cantly differ from the pure g-C3N4 bandgap (2.7 eV).
5

Obtenção de grafeno por esfoliação eletroquímica

Silva, Ederson Esteves da 18 August 2015 (has links)
Made available in DSpace on 2016-03-15T19:36:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-08-18 / Fundo Mackenzie de Pesquisa / A two-dimensional structure with a thickness of one atom in a Bravais lattice in a "honeycomb". So it is known graphene, with interesting property both in basal plane as the edges of the material. Consisting of carbon atoms in its sp2 hybridization, graphene has applications to mechanical areas, electrical, optical, chemistry, biology. This requires mastered the techniques of obtaining graphene. This paper presents the study of obtaining exfoliated material, seeking to control the process as well as obtain graphene by electrochemical. The process of obtaining exfoliation is important because through it can obtain more control over the exfoliated material. The material obtained was analyzed by Raman spectroscopy. Our results show that it is possible to obtain exfoliated material, and as the spectra material by analyzing the intensity of the peaks. / Uma estrutura bidimensional com a espessura de um átomo, em uma rede de bravais em forma de favos de mel . Assim é conhecido o grafeno, com propriedade interessante tanto no plano basal como nas bordas do material. Constituído de átomos de carbono em sua hibridização sp2, o grafeno possui aplicações às áreas de mecânica, elétrica, ótica, química, biologia. Para isso é necessário dominar as técnicas de obtenção de grafeno. Este trabalho apresenta o estudo da obtenção de material esfoliado, buscando controle no processo, além de se obter grafeno por via eletroquímica. O processo de obtenção por esfoliação eletroquímica é importante, pois por meio dele pode-se adquirir mais controle sobre o material esfoliado. O material obtido foi analisado através da técnica de Espectroscopia Raman. Os resultados mostraram que é possível obter material esfoliado e a análise deste material através da intensidade das bandas de seu espectro Raman.
6

Vlastnosti grafenoidových vrstev / Properties of graphenoid layers

Mach, Radoslav January 2018 (has links)
Master thesis “Properties of graphenoid layers” deals with materials of graphenoid nature such as graphene, graphene oxide and its reduced state. The paper effectively summarize basic theoretical knowledge in the first half of its range. In the second half the project deals with practical part consisted of experiments with application of graphene oxide solvents, its analysis and especially comparing properties of non-reduced graphene oxide with its chemically reduced form. Material is examined in a form of applied thin layers on different substrates.
7

Synthesis, Characterization, and Properties of Graphene-Based Hybrids with Cobalt Oxides for Electrochemical Energy Storage and Electrocatalytic Glucose Sensing

Botero Carrizosa, Sara C. 01 April 2017 (has links)
A library of graphene-based hybrid materials was synthesized as novel hybrid electrochemical electrodes for electrochemical energy conversion and storage devices and electrocatalytical sensing namely enzymeless glucose sensing. The materials used were supercapacitive graphene-family nanomaterials (multilayer graphene-MLG; graphene oxide-GO, chemically reduced GO-rGO and electrochemical reduced GOErGO) and pseudocapacitive nanostructured transition metal oxides including cobalt oxide polymorphs (CoO and Co3O4) and cobalt nanoparticles (CoNP). These were combined through physisorption, electrodeposition, and hydrothermal syntheses approaches. This project was carried out to enhance electrochemical performance and to develop electrocatalytic platforms by tailoring structural properties and desired interfaces. Particularly, electrodeposition and hydrothermal synthesis facilitate chemically-bridged (covalently- and electrostatically- anchored) interfaces and molecular anchoring of the constituents with tunable properties, allowing faster ion transport and increased accessible surface area for ion adsorption. The surface morphology, structure, crystallinity, and lattice vibrations of the hybrid materials were assessed using electron microscopy (scanning and transmission) combined with energy dispersive spectroscopy and selected-area electron diffraction, X-ray diffraction, and micro-Raman Spectroscopy. The electrochemical properties of these electrodes were evaluated in terms of supercapacitor cathodes and enzymeless glucose sensing platforms in various operating modes. They include cyclic voltammetry (CV), ac electrochemical impedance spectroscopy, charging-discharging, and scanning electrochemical microscopy (SECM). These hybrid samples showed heterogeneous transport behavior determining diffusion coefficient (4⨯10-8 – 6⨯10-6 m2/s) following an increasing order of CoO/MLG < Co3O4/MLG < Co3O4/rGOHT < CoO/ErGO < CoNP/MLG and delivering the maximum specific capacitance 450 F/g for CoO/ErGO and Co3O4/ rGOHT. In agreement with CV properties, these electrodes showed the highest values of low-frequency capacitance and lowest charge-discharge response (0.38 s – 4 s), which were determined from impedance spectroscopy. Additionally, through circuit simulation of experimental impedance data, RC circuit elements were derived. SECM served to investigate electrode/electrolyte interfaces occurring at the solid/liquid interface operating in feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. As expected, the hybrids showed an improved electroactivity as compared to the cobalt oxides by themselves, highlighting the importance of the graphene support. These improvements are facilitated through molecular/chemical bridges obtained by electrodeposition as compared with the physical deposition.
8

Printed transparent conducting electrodes based on carbon nanotubes (CNTs), reduced graphene oxide (rGO), and a polymer matrix.

Islam, Md Mazharul January 2019 (has links)
The main focus of this project was to prepare transparent and conductive electrodes (TCEs). TCEs were made out of multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), and polyvinylpyrrolidone (PVP). Based on the theoretical aspect, MWCNTs has emerged as a promising nanofiller in the polymer matrix due to its high electrical conductivity. As a nanofiller, MWCNTs were used with a small ratio of rGO with PVP as a polymer matrix in this project to prepare TCEs having low sheet resistance with high transparency. An appropriate amount of PVP has been shown to be a good combination with MWCNTs and rGO in the solvent to keep MWCNTs dispersed for a long time. Carboxyl group (-COOH) functionalized MWCNTs (FMWCNTs) was produced in a controlled oxidative procedure due to enabling good dispersion of FMWCNTs in water and ethanol solvents. In contrast, water dispersible rGO was chemically prepared by using GO and sodium borohydride where GO was produced from graphite by using improved Hummer's method. Drop casting and spray coating methods were applied to fabricate TCEswhere only water was used as the solvent for drop casted TCEs and a mixing ratio of water and ethanol was 70:30 as solvent for spray coated TCEs. It was also determined in this project that the spray coating method was more suitable for preparing TCEs rather than thedrop casting method due to easy fabrication, large area coating possibility, and the smoothness of the coated film surface. The sheet resistance was obtained as 5026 Ω/ ⃣  where the transparency was 65% in the case of the drop casted electrode for the ratio of rGO:FMWCNTs:PVP was 1.2:60:1 with 0.02 mg FMWCNTs. In the case of spray coated electrode at the same ratio of rGO:FMWCNTs:PVP, the sheet resistance was measured as 5961 Ω/ ⃣  where the transparency was 73%. But in the case of 60:1 mass ratio of FMWCNTs:PVP with 0.02 mg FMWCNTs, the sheet resistance was 7729 Ω/ ⃣  and transparency was 77% for spray coated electrode. So, it is clear that the sheet resistance was improved by adding a small mass ratio of rGO with FMWCNTs:PVP.
9

Fe2O3/N Doped rGO Anode Hybridized with NiCo LDH/Co(OH)2 Cathode for Battery-like Supercapacitor

Liu, Huanji, Zhu, Juncheng, Li, Zhong, Shi, Zhicheng, Zhu, Jiliang, Mei, Hua 01 January 2021 (has links)
In this work, a high-performance hybrid supercapacitor is assembled with N-doped reduced graphene oxide (N-rGO) decorated with Fe2O3 (Fe2O3/N-rGO) as the anode, and NiCo layered double hydroxide integrated with conductive Co(OH)2 (NiCo LDH/Co(OH)2) as the cathode. The two main pseudo-capacitive materials are modified by different materials (N-rGO and Co(OH)2) to enhance the conductivity. For anode, the Fe2O3 nanoparticles are uniformly dispersed on N-rGO via a facile solvent-thermal method. The highly conductive Fe2O3/N-rGO exhibits a superior capacitance of 912.9F/g at 1 A/g and retains 84% at 30 A/g. The NiCo LDH/Co(OH)2 cathode also synthesized by a convenient solvent-thermal method delivers a high specific capacitance of 2220.0F/g at 1 A/g and retains 70% at a high current density of 50 A/g. Utilizing these electrodes, we successfully fabricate a hybrid battery-like supercapacitor with an excellent energy density of 103.3 Wh/kg at an outstanding power density of 790 W/kg, an excellent capacitance of 296.3F/g at 1 A/g and a remarkable cyclic stability with 92% retention after 1000 cycles at 10 A/g. Due to the elaborately designed electrode materials, the battery-like supercapacitor exhibits excellent electrochemical properties and is an inspiration for future energy storage devices.
10

1, 2, and 3 Dimension Carbon/Silicon Carbon Nitride Ceramic Composites

Calderon, Flores Jean 01 January 2014 (has links)
Polymer-derived ceramics (PDCs) are exceptional ultra-high temperature and stable multifunctional class of materials that can be synthesized from a polymer precursor through thermal decomposition. The presented research focuses on 1-D nanofibers, 2-D films and 3-D bulk, carbon-rich silicon carbon nitride (SiCN) ceramics. 1-D nanofibers were prepared via electrospinning for light weight, flame retardant and conductive applications. The commercially available CerasetTM VL20, a liquid cyclosilazane pre-ceramic precursor, was mixed with polyacrylonitrile (PAN) in order to make the cyclosilazane electrospinnable. Carbon-rich PDC nanofibers were fabricated by electrospinning various ratios of PAN/cyclosilazane solutions followed by pyrolysis. Surface morphology of the electro spun nanofibers characterized by SEM show PDC nano?bers with diameters ranging from 100-300 nm. Also, thermal stability towards oxidation showed a 10% mass loss at 623°C. 2-D carbon/SiCN films were produced by drop-casting a mixture of PAN/cyclosilazane onto a glass slide followed by pyrolysis of the film. Samples ranging from 10:1 to 1:10 PAN:cyclosilazane were made by dissolving the solutes into DMF to produce solutions ranging from 1% to 12% by weight. Green, heat-stabilized, and pyrolyzed 8% films were examined with FTIR to monitor the change in chemical structure at each step of the ceramization. SEM shows that high PAN samples produced films with ceramic embedded spheroid components in a carbon matrix, while high cyclosilazane samples produced carbon embedded spheroid. Finally, this research focuses on the challenge of making fully dense, 3-D bulk PDCs materials. Here we present a composite of SiCN with reduced graphene oxide (rGO) aerogels as a route for fully dense bulk PDCs. Incorporation of the rGO aerogel matrix into the SiCN has its pros and cons. While it lowers the strength of the composite, it allows for fabrication of large bulk samples and an increase in the electrical conductivity of the PDC. The morphology, mechanical, electrical properties and thermal conductivity of graphene-SiCN composite with varying rGO aerogel loading (0.3-2.4%) is presented. The high temperature stability, high electrical conductivity and low thermal conductivity of these composites make them excellent candidates for thermoelectric applications. Generally, carbon-rich SiCN composites with improved thermal and electrical properties are of great importance to the aerospace and electronics industries due to their expected harsh operating environments.

Page generated in 0.0193 seconds