Spelling suggestions: "subject:"RNA polymerase I"" "subject:"RNA olymerase I""
11 |
Human Ribosomal DNA and RNA Polymerase I Fate during UV-induced DNA Repair / Devenir de l'ADN Ribosomique et de l'ARN Polymérase I lors de la Réparation de l'ADN induite par les UVDaniel, Laurianne 23 June 2017 (has links)
La réparation par excision de nucléotides (NER) garantit l'intégrité du génome lors de l'exposition aux rayons UV. Après irradiation aux UV, un des premiers problèmes rencontrés par la cellule est l'arrêt général de la transcription dû au blocage de l'ARN polymérase II (ARNP2) au niveau des lésions UV. Pour régler ce problème, le NER possède une voie de réparation spécifiquement couplée à la transcription (TCR). Les connaissances concernant le NER ont été obtenu via des études sur la transcription par l'ARNP2. Cependant, dans les cellules à fort métabolisme, plus de 60% de la transcription correspond à la transcription, dans le nucléole, de l'ADN ribosomique (ADNr) par l'ARN polymérase I (ARNP1). De nombreuses protéines sont absence du nucléole, c'est pourquoi certains processus nucléaires ne peuvent avoir lieu dans cette structure. Afin d ‘être répliqué et réparé, l'ADNr se déplace à la périphérie du nucléole. Malgré l'importance de la transcription par l'ARNP1, la réparation de l'ADNr a été peu étudiée chez l'homme. De plus, à notre connaissance, aucune étude ne s'est penchée sur le mécanisme moléculaire du déplacement de l'ADNr à la périphérie du nucléole. Notre étude démontre l'implication de la TCR dans la réparation de l'ADNr après lésions UV induites. De plus, nos recherches ont démontré que l'ARNP1 reste accrochée à l'ADNr et sont tous les deux délocalisés à la périphérie du nucléole après irradiation aux UV. Enfin, nous avons identifié l'actin et la moysine I nucléaires comme facteurs protéiques nécessaire à cette délocalisation / Nucleotide excision repair (NER) guarantees genome integrity and proper cellular functions against UV-induced DNA damage. After UV irradiation, one of the first burden cells have to cope with is a general transcriptional block caused by the stalling of RNA polymerase II (RNAP2) onto distorting UV lesions. To insure UV lesions repair specifically on transcribed genes, NER is coupled with transcription in an extremely organized pathway known as Transcription-Coupled Repair (TCR). Most of the knowledge about TCR has been gathered from RNAP2 transcription. However, in highly metabolic cells, more than 60% of total cellular transcription results from ribosomal DNA (rDNA) transcription, by the RNA polymerase I (RNAP1), which takes place in the nucleolus. Many nuclear proteins are excluded from the nucleolus and because of this some nucleolar processes cannot occur inside this structure. In order to be replicated and repaired rDNAs need to be displaced at the nucleolar periphery. Despite the importance of RNAP1 transcription, repair of the mammalian transcribed rDNA has been scarcely studied. Moreover, to the best of our knowledge no molecular mechanism has been proposed for rDNA displacement. Our study clearly demonstrated that the full TCR machinery is needed to repair UV-damaged rDNA and restart RNAP1 transcription. Our results show that UV lesions block RNAP1 transcription and that RNAP1 is firmly stalled onto rDNAs without being degraded. Our study also describes the displacement of the RNAP1/rDNA complex to the nucleolar periphery after UV irradiation and identifies both nuclear ß-actin and nuclear myosin I as factors required for this displacement
|
12 |
Functional analysis of nucleolin-chromatin interaction in vivo / L'analyse fonctionnelle de l'interaction nucléoline-chromatine in vivoCong, Rong 25 July 2011 (has links)
La nucléoline, une des protéines non-ribosomique les plus abondantes du nucléole, semble être impliquée dans de nombreux aspects du métabolisme de l'ADN en plus de son rôle dans la régulation de la transcription par l'ARN polymérase I, la maturation du pré-ARNr et l’assemblage des ribosomes. L'objectif de cette thèse est d'étudier l'interaction de la nucléoline avec la chromatine, et de déchiffrer la fonction de la nucléoline dans la régulation de l’expression génique. Il a été rapporté que la nucléoline est nécessaire pour la transcription des gènes codant pour l'ADN ribosomal in vivo, mais le mécanisme par lequel la nucléoline module la transcription d’ARN polymérase I (Pol I) est inconnue. Dans cette thèse, je montre que l’inhibition de l’expression de la nucléoline par siRNAconduit dans les gènes de l’ADNr à une augmentation de la marque hétérochromatine et une diminution des marques caractéristiques de l’euchromatine. La nucléoline est associée à des gènes ADNr non méthylés et ChIP-seq montrent un fort enrichissement de la nucléoline dans le promoteur et la région codante de l'ADNr. La nucléoline est capable d'interférer avec la liaison de TTF-1 sur le terminateur T0 proches du promoteur inhibant ainsi le recrutement du sous-unité NoRC TIP5 et HDAC1 et la création d'un état répressif hétérochromatine. Cette invasion de macroH2A1 dans le nucléole joue un rôle majeur dans l'inhibition de la transcription par la RNA Polymérase I en l'absence de la nucléoline. Ces résultats révèlent l'importance de la nucléoline pour le maintien de l'état euchromatien de l'ADNr et le rôle de macroH2A1 dans la régulation de la transcription de l'ADNr. / Besides the well-known role of the nucleolus in ribosome biogenesis, nucleoli play important roles in the regulation of many fundamental cellular processes, including cell cycle regulation, apoptosis, telomerase production, RNA processing and therefore it is not surprising that many nucleolar proteins appear to be multifunctional proteins. Nucleolin, one of the most abundant non-ribosomal proteins of the nucleolus, has been the focus of many studies since it was first described 35 years ago. It seems to be involved in many aspects of DNA metabolism, chromatin regulation and appeared to be a good pharmacological target for drug development in addition to its role in RNA polymerase I transcription and pre-ribosomal processing and assembly in pre-ribosomes. In eukaryotic cells, DNA is packed into nucleosomes to form chromatin in the nucleus. The cells develop a variety of strategies to overcome the nucleosomal barriers. These strategies include DNA methylation, histone post-translational modifications, incorporation of histone variants and ATP dependent chromatin remodeling. The aim of this thesis is to study the interaction of nucleolin with chromatin, and to decipher the mechanism of nucleolin in gene regulation. It was reported that nucleolin possesses a histone chaperone activity, helps the transcription through nucleosomes, and it is required for ribosomal DNA gene (rDNA) transcription in vivo, but the mechanism by which nucleolin modulates RNA polymerase I (Pol I) transcription is unknown. In the thesis it is shown that nucleolin knockdown results in an increase of the heterochromatin mark H3K9me2 and a decrease of H4K12Ac and H3K4me3 euchromatin histone marks in rDNA genes. Nucleolin is associated with unmethylated rDNA genes and ChIP-seq experiments identified a strong enrichment of nucleolin in the promoter and coding regions of rDNA. Nucleolin is able to interfere with the binding of TTF-1 on the promoter-proximal terminator T0 thus inhibiting the recruitment of the nucleolar remodeling complex (NoRC) subunit TIP5 and HDAC1 and the establishment of a repressive heterochromatin state. In addition, in absence of nucleolin or after inhibition of Pol I by actinomycin D, a strong relocalization of the histone variant macroH2A1 to the nucleolus and on the rDNA genes was observed. This invasion of macroH2A1 in the nucleolus plays a major role in the inhibition of Pol I transcription in absence of nucleolin, as knockdown of macroH2A1 eliminates the repressive effect of nucleolin depletion. These results reveal the importance of nucleolin for the maintenance of the euchromatin state of rDNA required for an efficient production of ribosomal RNAs and the role of macroH2A1 in rDNA transcription.
|
Page generated in 0.032 seconds