Spelling suggestions: "subject:"RNA bindingprotein"" "subject:"RNA bindungsprotein""
1 |
The role of the La antigen and associated RNAs in the regulation of protein synthesisJames, Marion Clare January 1996 (has links)
No description available.
|
2 |
Investigating the Role of the RNA-Binding Protein MUSASHI-2 (MSI2) in Normal Hematopoiesis and LeukemiaHolzapfel, Nicholas January 2016 (has links)
Musashi-2 (MSI2), a member of the Musashi family of RNA-binding proteins, is thought to play a critical role in the maintenance of stem cell populations and in the formation of aggressive tumours. Multiple studies indicate that MSI2 plays an important role in the maintenance of hematopoietic stem cell (HSC) populations and recent studies in humans identify MSI2 as an independent prognostic factor for overall survival in patients with Acute Myeloid Leukemia (AML). Importantly, though correlative studies implicate MSI2 as a contributor to aggressive disease in human AML, no study to date has attempted to analyze the functional role of MSI2 in primary human AML samples. Furthermore, though MSI2 is critical for the maintenance of HSCs, the mechanisms through which MSI2 functions are unknown. The work presented in this thesis elucidates the biochemical mechanisms through which MSI2 functions and examines the functional role of MSI2 in human AML.
Using a lentiviral-mediated shRNA knockdown of MSI2, I demonstrate that MSI2 is critical for the maintenance of human AML. A loss of MSI2 greatly impairs the ability of AML samples to maintain disease in a xenotransplantation assay. MSI2 is an RNA binding protein that is thought to repress the translation of target mRNAs in the cytoplasm and prevent the maturation of microRNAs (miRNAs) in the nucleus. The targets of MSI2 are believed to be potent regulators of stem-ness and dysregulation of these targets could very well contribute to neoplastic transformation. Cross-linking immunoprecipitation followed by next generation sequencing (CLIP-Seq), revealed the RNA binding properties of MSI2 and the RNA targets bound by MSI2. To identify novel MSI2 protein interactors, the MSI2 locus was endogenously tagged with the promiscuous biotin ligase BirA* and subjected to BioID analysis. When compared to appropriate controls, we were able to robustly identify proteins that associate with MSI2. The analysis of one of these protein binding partners, Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) reveals a critical role in the normal function of HSCs. / Thesis / Doctor of Philosophy (PhD) / The hematopoietic system is responsible for the production of billions of mature cells everyday. These mature cells are “differentiated”, meaning that they have gone through a process that has allowed them to become specialized to perform a very specific role. Throughout the process of differentiation, most functional cells lose their ability to proliferate. The continued production of these functional cells comes from a pool of rare, quiescent, hematopoietic stem cells (HSC). These cells maintain the production of mature cells throughout the lifetime of an organism. The Musashi-2 (MSI2) protein has been identified as a protein that is critical for the normal function of HSCs. By altering the levels of the MSI2, it is possible to greatly impair or enhance the activity of HSCs. Moreover, correlative studies implicate MSI2 as a contributor to aggressive Acute Myeloid Leukemia (AML), a disease that occurs when HSCs become dysregulated. Despite its important roles in normal and abnormal hematopoiesis, very little is known about how MSI2 functions and whether it actually has a functional role in AML. We set forth to identify mechanisms through which the MSI2 protein functions and to prove that MSI2 contributes to the maintenance of human AML.
We reveal that the MSI2 protein plays a critical role for the maintenance of human AML and identify novel pathways through which the protein functions. Importantly, MSI2 is known to interact with mRNA in order to alter post-transcriptional gene expression. We thoroughly characterize the RNA-binding characteristics of MSI2 and identify a plethora of MSI2 RNA targets. In an unbiased manner, we also identify a list of MSI2-protein interactors. We identify one MSI2 protein-binding partner, Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) that is preferentially expressed in the most immature fraction of HSCs and is critical for the proper function of HSCs.
|
3 |
Probing RNA binding specificities of AID/APOBEC proteins by iCLIPValeiras, Brenda January 2019 (has links)
The AID/APOBEC protein family comprises a group of cytosine deaminases found in vertebrates that are capable of modifying cytosine to uracil in the context of RNA or singlestranded DNA. They exert diverse valuable physiological functions including antibody diversification and restriction of viral infection. However, off-target mutations have also been shown to contribute to cancer development, making it crucial to better understand the interactions and mechanisms that regulate AID/APOBEC activity and editing site fidelity. In this regard, a new focus on RNA as a putative regulator of AID/APOBECs has recently emerged. Regardless of whether it is used or not as a substrate for deamination, most members of the family have been shown to retain the ability to bind RNA, emphasizing a potential regulatory role for this interaction. However, little is known about AID/APOBECs RNA binding specificity. A promiscuous binding has been suggested in some cases while in vitro evidence for other members of the family indicate a certain level of specificity. Therefore, to thoroughly unravel the AID/APOBECs RNA binding specificity, in my doctoral research I applied cross-linking and immunoprecipitation (iCLIP), an unbiased technique that allows identification of protein-bound RNAs with nucleotide resolution in living cells. As a first approach, I adapted the technique for its use in yeast and probed the RNA binding of AID and APOBEC3G, revealing different degrees of preference for small structured RNAs and recognition of particular sites within them. I then expanded the analysis to mammalian cells (HEK293T) and evaluated an extended set of APOBECs finding that, even in the presence of a broader and more complex pool of RNAs, small RNAs were still significantly bound by some members of the family. Furthermore, the comparative analysis of AID, APOBEC1, APOBEC3G, APOBEC3A and APOBEC3B iCLIP data obtained in my research, revealed shared and individual preferences for certain RNAs, suggesting a degree of binding specificity among APOBECs. In summary, my thesis outlines for the first time a comprehensive analysis of the RNA binding specificity of different AID/APOBECs in vivo, including the description of novel interactions with nucleotide resolution. The results obtained are of great value and open the field for further investigation of the specific meaning and validation of each preferential binding, providing new insights into understanding the role of AID/APOBEC interaction with RNA.
|
4 |
Characterization of Multiple Exon 1 Variants and Neuron-specific Transcriptional Control of Mammalian 'Hud'Bronicki, Lucas M. 10 January 2013 (has links)
The RNA-binding protein (RBP) and Hu/ELAV family member HuD regulates mRNA metabolism of genes that encode proteins involved in neuronal differentiation, learning and memory, and certain neurological diseases. Given the important functions of HuD in a variety of processes, we set out to characterize the 5’ genomic region of the mammalian HuD gene and determine the mechanisms that regulate its mRNA expression in neurons using P19 cells and mouse brain as models.
Bioinformatic and 5’RACE (rapid amplification of cDNA ends) analyses of the HuD 5’ genomic flanking region identified eight conserved leader exons (E1s), two of which are novel. Expression of all E1 variants was established in differentiating P19 cells, mouse embryonic (E14.5) and adult brains. Through several complementary approaches, we determined that the abundance of HuD mRNA is predominantly under transcriptional control in differentiating neurons. Sequential deletion of the 5’ regulatory region upstream of the predominantly expressed E1c variant revealed a well-conserved 400 bp DNA region that contains five E-boxes and is capable of directing expression of HuD specifically in neurons. Using electrophoretic mobility shift assays (EMSAs), chromatin immunoprecipitations (ChIPs), and E1c 5’ regulatory region (RR) deletion and mutation analysis, we found that two of these E-boxes are targeted by neurogenin 2 (NGN2/NEUROG2) and that this mechanism is important for induction of HuD mRNA in neurons. Additional deletion and mutation of the E1c 5’ RR revealed that putative cis-acting elements for Kruppel-like factors (KLFs) and nuclear DEAF-1-related (NuDR) transcription factors also positively regulate transcription of HuD.
Together, our findings reveal that the intricate transcriptional regulation of mammalian HuD involves eight leader exons and potentially alternate promoters. We further demonstrate that transcription of HuD requires neuron-specific control by NGN2 and possibly KLF and NuDR transcription factors. To our knowledge, this is the first study to identify transcriptional events that positively regulate expression of HuD.
|
5 |
Characterization of Multiple Exon 1 Variants and Neuron-specific Transcriptional Control of Mammalian HuDBronicki, Lucas M. 21 January 2013 (has links)
The RNA-binding protein (RBP) and Hu/ELAV family member HuD regulates mRNA metabolism of genes that encode proteins involved in neuronal differentiation, learning and memory, and certain neurological diseases. Given the important functions of HuD in a variety of processes, we set out to characterize the 5’ genomic region of the mammalian HuD gene and determine the mechanisms that regulate its mRNA expression in neurons using P19 cells and mouse brain as models.
Bioinformatic and 5’RACE (rapid amplification of cDNA ends) analyses of the HuD 5’ genomic flanking region identified eight conserved leader exons (E1s), two of which are novel. Expression of all E1 variants was established in differentiating P19 cells, mouse embryonic (E14.5) and adult brains. Through several complementary approaches, we determined that the abundance of HuD mRNA is predominantly under transcriptional control in differentiating neurons. Sequential deletion of the 5’ regulatory region upstream of the predominantly expressed E1c variant revealed a well-conserved 400 bp DNA region that contains five E-boxes and is capable of directing expression of HuD specifically in neurons. Using electrophoretic mobility shift assays (EMSAs), chromatin immunoprecipitations (ChIPs), and E1c 5’ regulatory region (RR) deletion and mutation analysis, we found that two of these E-boxes are targeted by neurogenin 2 (NGN2/NEUROG2) and that this mechanism is important for induction of HuD mRNA in neurons. Additional deletion and mutation of the E1c 5’ RR revealed that putative cis-acting elements for Kruppel-like factors (KLFs) and nuclear DEAF-1-related (NuDR) transcription factors also positively regulate transcription of HuD.
Together, our findings reveal that the intricate transcriptional regulation of mammalian HuD involves eight leader exons and potentially alternate promoters. We further demonstrate that transcription of HuD requires neuron-specific control by NGN2 and possibly KLF and NuDR transcription factors. To our knowledge, this is the first study to identify transcriptional events that positively regulate expression of HuD.
|
6 |
Bruno regulates mRNA translation by binding to multiple sequence motifsReveal, Bradley Steven 23 February 2011 (has links)
Oskar (Osk) is a posterior body patterning determinant in Drosophila melanogaster oocytes. oskar (osk) mRNA is translationally repressed until it reaches the posterior of the oocyte where Osk protein accumulates. Translational repression of osk prior to posterior localization is mediated by the RNA binding protein, Bruno (Bru). To better define Bru binding sites, I performed in vitro selections using full length Bru and the fragments containing either the first two RRMs (RRM1+2) or the third RRM (RRM3+). The aptamers from the final round from each of the selections produced a multitude of overrepresented primary sequence motifs. Examples of each of these motifs were found in the 3’UTRs of the mRNAs that Bru is known to regulate during oogenesis. GFP reporter transgenes under the control of the UAS-Gal4 expression system were constructed with each class of the binding sites within the reporter transgenes’ 3’UTRs to test the motifs’ ability to repress the reporters in vivo. In a wildtype background, the GFP reporters containing the binding sites were translationally repressed. In the aret mutant background, the GFP levels of the repressed GFP reporters increased with reduced Bru activity, suggesting the transgenes’ repression is mediated by Bru. Three of the motifs isolated in the in vitro selections reside in the AB and C regions of the osk 3’UTR, and the three classes of sites were mutated in the AB and C regions. The mutated AB and C regions were used to assay for a reduction of Bru binding affinity for the mutant RNAs. Additionally, the mutations were incorporated into an osk genomic transgene that was introduced into an osk RNA null as well as an Osk protein null background. The mutations reduced Bru binding to the AB and C regions. The transgenes containing the mutated Bru binding sites could not fully rescue the osk RNA null phenotype but can fully rescue the Osk protein null phenotype, suggesting an osk transcript can regulate other osk mRNAs in trans. / text
|
7 |
Characterization of Multiple Exon 1 Variants and Neuron-specific Transcriptional Control of Mammalian HuDBronicki, Lucas M. 21 January 2013 (has links)
The RNA-binding protein (RBP) and Hu/ELAV family member HuD regulates mRNA metabolism of genes that encode proteins involved in neuronal differentiation, learning and memory, and certain neurological diseases. Given the important functions of HuD in a variety of processes, we set out to characterize the 5’ genomic region of the mammalian HuD gene and determine the mechanisms that regulate its mRNA expression in neurons using P19 cells and mouse brain as models.
Bioinformatic and 5’RACE (rapid amplification of cDNA ends) analyses of the HuD 5’ genomic flanking region identified eight conserved leader exons (E1s), two of which are novel. Expression of all E1 variants was established in differentiating P19 cells, mouse embryonic (E14.5) and adult brains. Through several complementary approaches, we determined that the abundance of HuD mRNA is predominantly under transcriptional control in differentiating neurons. Sequential deletion of the 5’ regulatory region upstream of the predominantly expressed E1c variant revealed a well-conserved 400 bp DNA region that contains five E-boxes and is capable of directing expression of HuD specifically in neurons. Using electrophoretic mobility shift assays (EMSAs), chromatin immunoprecipitations (ChIPs), and E1c 5’ regulatory region (RR) deletion and mutation analysis, we found that two of these E-boxes are targeted by neurogenin 2 (NGN2/NEUROG2) and that this mechanism is important for induction of HuD mRNA in neurons. Additional deletion and mutation of the E1c 5’ RR revealed that putative cis-acting elements for Kruppel-like factors (KLFs) and nuclear DEAF-1-related (NuDR) transcription factors also positively regulate transcription of HuD.
Together, our findings reveal that the intricate transcriptional regulation of mammalian HuD involves eight leader exons and potentially alternate promoters. We further demonstrate that transcription of HuD requires neuron-specific control by NGN2 and possibly KLF and NuDR transcription factors. To our knowledge, this is the first study to identify transcriptional events that positively regulate expression of HuD.
|
8 |
Characterization of Multiple Exon 1 Variants and Neuron-specific Transcriptional Control of Mammalian HuDBronicki, Lucas M. January 2013 (has links)
The RNA-binding protein (RBP) and Hu/ELAV family member HuD regulates mRNA metabolism of genes that encode proteins involved in neuronal differentiation, learning and memory, and certain neurological diseases. Given the important functions of HuD in a variety of processes, we set out to characterize the 5’ genomic region of the mammalian HuD gene and determine the mechanisms that regulate its mRNA expression in neurons using P19 cells and mouse brain as models.
Bioinformatic and 5’RACE (rapid amplification of cDNA ends) analyses of the HuD 5’ genomic flanking region identified eight conserved leader exons (E1s), two of which are novel. Expression of all E1 variants was established in differentiating P19 cells, mouse embryonic (E14.5) and adult brains. Through several complementary approaches, we determined that the abundance of HuD mRNA is predominantly under transcriptional control in differentiating neurons. Sequential deletion of the 5’ regulatory region upstream of the predominantly expressed E1c variant revealed a well-conserved 400 bp DNA region that contains five E-boxes and is capable of directing expression of HuD specifically in neurons. Using electrophoretic mobility shift assays (EMSAs), chromatin immunoprecipitations (ChIPs), and E1c 5’ regulatory region (RR) deletion and mutation analysis, we found that two of these E-boxes are targeted by neurogenin 2 (NGN2/NEUROG2) and that this mechanism is important for induction of HuD mRNA in neurons. Additional deletion and mutation of the E1c 5’ RR revealed that putative cis-acting elements for Kruppel-like factors (KLFs) and nuclear DEAF-1-related (NuDR) transcription factors also positively regulate transcription of HuD.
Together, our findings reveal that the intricate transcriptional regulation of mammalian HuD involves eight leader exons and potentially alternate promoters. We further demonstrate that transcription of HuD requires neuron-specific control by NGN2 and possibly KLF and NuDR transcription factors. To our knowledge, this is the first study to identify transcriptional events that positively regulate expression of HuD.
|
9 |
Role of the RNA binding protein Musashi2 in myogenesis / 筋分化におけるRNA結合タンパクMsi2の機能に関する研究Wang, Ruochong 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(薬科学) / 甲第24206号 / 薬科博第159号 / 新制||薬科||17(附属図書館) / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 伊藤 貴浩, 教授 中山 和久, 教授 生田 宏一 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
|
10 |
Translational Regulation of Acetylcholinesterase by the RNA Binding Protein Pumilio-2 at the Neuromuscular SynapseMarrero, Emilio 06 October 2011 (has links)
In skeletal muscle acetylcholinesterase AChE is highly expressed at sites of nerve-muscle contact where it is regulated at both the transcriptional and post-transcriptional levels. Scientists have elucidated many aspects of synaptic AChE structure, function, and localization during the past 80 years. However our understanding of the molecular mechanisms underlying its regulation is incomplete, but it appears to involve both translational and post-translational events as well. We found that Pumilio-2 (PUM2), an RNA binding translational repressor, is highly localized at the neuromuscular junction where AChE mRNA concentrates and that PUM2 binds to the AChE transcripts when immoprecipitation studies were performed. A direct binding between a recombinant PUM2-HD and the Pumilio Binding Site (PBE) in a segment of the AChE 3’UTR was demonstrated by Gel shift assays. Transfecting skeletal muscle cells with shRNAs specific for PUM2 upregulated AChE expression, whereas overexpression of PUM2 decreased AChE activity. We conclude that PUM2 binds to AChE mRNA and regulates AChE expression translationally at the neuromuscular synapse. We found that PUM2 is regulated by the motor nerve suggesting a trans-synaptic mechanism for locally regulating translation of specific synaptic proteins involved in modulating synaptic transmission, analogous to CNS synapses. PUM2 expression is critically important in many cell types, virtually nothing is known about the regulation of PUM2 expression itself. Analyzing the PUM2 mRNA 3’UTR we found fifteen possible PBEs in the 3 Kb 3’ UTR. We show that PUM2 binds in vivo to its own mRNA. Overexpression of PUM2 in several cell types transfected with a green fluorescent protein (GFP) reporter construct linked to the full length PUM2 3’UTR (GFP-PUM2-3’UTRFL) suppresses GFP expression suggesting that PUM2 downregulates its own expression by binding to its own 3’UTR. Mutations of the first five PBEs yield the expression of the reporter gene indicating that at least one PBE is functional in the autoregulation of PUM2. These observations suggest a novel model for the localized regulation of protein translation through a negative feedback loop. Much is known about PUM2 as a translational regulative protein but little is known about PUM2 cell localization and possible mechanism of translational regulation. In this work we found PUM2 to be highly localized to the cell rough endoplasmic reticulum and that PUM2 is associated with ribosomal RNA. In addition, we found that the GFP protein itself, together with its mRNA and ribosomal RNA (rRNA), were localized in the PUM2 positive complexes when GFP-PUM2-3’UTRFL was transfected into muscle cells. These observations further suggest a mechanism of regulation where translation of the protein occurs but the protein remains associated with the ribonucleoprotein complex, possibly to be transported together with its mRNA to specific domains inside the cell. Thus when needed, more protein is produced in those specific cell regions.
|
Page generated in 0.0734 seconds