1 |
An investigation of cell wall lytic enzymes in Streptomyces coelicolorHaiser, Henry 04 1900 (has links)
An increasing appreciation for the role of small RNA regulators prompted us to
investigate the scope of RNA regulation in the bacterium, Streptomyces
coelicolor. Our search revealed an antisense RNA that corresponds to the
upstream region of four genes encoding cell wall cleavage enzymes (cell wall
hydrolases), and a previously uncharacterized population of transfer RNA (tRNA)
cleavage products. Further characterization of the 'tRNAs led to the discovery that
S. coelicolor tRNAs are cleaved into 'tRNA halves' in a developmentally regulated
fashion. All tRNAs seem to be susceptible to tRNA cleavage, although
a bias was detected for tRNAs specifying highly used codons. To date, our work
is the sole description of 'tRNA half production in a bacterium, and recent
studies suggest that it is a widespread phenomenon among eukaryotic organisms. In a separate line of investigation, we noticed that a previous study had
predicted that the genes associated with the antisense RNA are under the control
of a riboswitch- a regulatory RNA element that directly controls gene expression
in response to specific conditions. Our multifaceted characterization of this
system began with the construction and phenotypic analyses of deletion mutant
strains for several of the cell wall hydrolase-encoding genes. We demonstrate that
S. coelicolor cell wall hydrolases are involved in germination, vegetative growth,
and sporulation. Finally, we studied the potential for riboswitch regulation of one
of the cell wall hydrolase-encoding genes, rpfA. RpfA is a resuscitation:
Qromoting factor protein that is important for the revival of dormant bacteria,
including the human pathogen and S. coelicolor relative - Mycobacterium
tuberculosis. Our investigation uncovered evidence suggesting that the riboswitch
region is involved in the regulation of rpfA, and we identified specific conditions
under which it is repressed. This work represents a novel paradigm in the
regulation of cell wall hydrolase expression. / Thesis / Doctor of Philosophy (PhD)
|
2 |
The Role of Two-Component and Small RNA Regulatory Systems in Pseudomonas aeruginosa BiofilmsTaylor, Patrick 13 September 2019 (has links)
Biofilms are a crucial adaptation for bacterial survival against stresses from external environments. Biofilms are adherent colonies of sessile bacteria embedded within a self-produced matrix. Bacterial control over formation, maintenance, and response to external stresses are strictly regulated. However, complexities of intracellular signaling for biofilm regulation are still not fully understood. In this thesis, I report on two distinct regulatory systems important for biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. The first regulatory system I report on is the two-component system TctD-TctE. This system is involved in regulating the uptake of tricarboxylic acids such as citric acid and is involved in biofilm-specific susceptibility to aminoglycoside antibiotics. Here I describe work I performed characterizing the involvement of TctD-TctE in biofilm development when citric acid is present as a carbon source in nutrient media. In further characterizing a previously observed aminoglycoside susceptibility, I found that a strain with a deletion of TctD-TctE (ΔtctED) has a heightened accumulation of tobramycin in its biofilms when grown in the presence of citric acid. In ΔtctED, I determined that there was an inhibition of overall cell growth when citric acid was present in nutrient media. Additionally, in the presence of citric acid, ΔtctED displayed high levels of biofilm formation. This contrasted with normal biofilm development observed in the PA14 wild type strain where biofilm mass was reduced in the presence citric acid. The second project of this thesis reports on a novel regulatory small RNA, the Small RNA Regulator of Biofilms (SrbA). SrbA was found to be unique to P. aeruginosa and displayed no homology with any other sequenced bacterial species. I found that loss of SrbA resulted in a significant reduction in biofilm mass. Subsequently, loss of SrbA also leads to attenuation of P. aeruginosa pathogenicity in Caenorhabditis elegans nematodes. Bacterial biofilms possess specific regulatory programs that are still just being appreciated for their complexity. This thesis work adds to our understanding of biofilm regulation by studying roles of the two-component system TctD-TctE and the small RNA SrbA in P. aeruginosa.
|
Page generated in 0.0559 seconds