• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DEVELOPMENT OF AN RNAi THERAPEUTIC STRATEGY AGAINST NON-ALCOHOLIC STEATOHEPATITIS (NASH)

Yenilmez, Batuhan O. 01 September 2021 (has links)
Nonalcoholic steatohepatitis (NASH) is a severe liver disorder characterized by triglyceride accumulation, severe inflammation, and fibrosis. With the recent increase in prevalence, NASH is now the leading cause of liver transplantation, with no approved therapeutics available. Despite years of research, the exact molecular mechanism of NASH progression is not well understood, but fat accumulation is believed to be the primary driver of the disease. Therefore, diacylglycerol O-acyltransferase 2 (DGAT2), a key enzyme in triglyceride synthesis, has been explored as a NASH target. RNAi-based therapeutics is revolutionizing the treatment of liver diseases, with recent chemical advances supporting long term gene silencing with single subcutaneous administration. Here we identified a hyper-functional, fully chemically stabilized GalNAc conjugated siRNA targeting DGAT2 (Dgat2-1473) that upon injection elicits up to three months of DGAT2 silencing (>80-90%, p<0.0001) in wild-type and NSG-PiZ “humanized” mice. Using an obesity-driven mouse model of NASH (ob/ob-GAN), Dgat2-1473 administration prevents and reverses triglyceride accumulation (> 50%, p:0.0008), resulting in significant improvement of the fatty liver phenotype. However, surprisingly, the reduction in liver fat didn’t translate into a similar impact on inflammation and fibrosis. Thus, while Dgat2-1473 is a practical, long-lasting silencing agent for potential therapeutic attenuation of liver steatosis, combinatorial targeting of a second pathway may be necessary for therapeutic efficacy against NASH.

Page generated in 0.0225 seconds