• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CFD Modeling and Optimization of Primary sedimentation tank

Zhang, Aibin January 2017 (has links)
In this project, the flow field characteristics of the simplified 2D rectangular primary sedimentation tank in Syvab wastewater treatment plant were achieved by a transient water-air two phases finite-volume method, applying Volume-Of-Fluid (VOF) model. RNG k-ε turbulence model was also employed to calculate the turbulent kinetic energy and its dissipation rate. The undesired hydraulic phenomenon for solid sedimentation was detected in original tank. To reduce the velocity and turbulence intensity of the influent, two categories of optimization methods were proposed, which are installing the baffle and changing the velocity inlet. The modifying effects of different methods were compared by the velocity profiles and the contours of kinetic energy. It turns out that both ways provide a preferred condition for particle settling. In the end, further research was forecasted and the work direction were given. / I detta projekt uppnåddes 2D modellering av avloppsflödesfältets karaktär hos en förenklade och rektangulär primära sedimenteringsbassäng, Syvab avloppsreningsverk, genom en transient-tvåfas-finita-volymmetoden med vatten och luft, som tillämpades med Volume-Of-Fluid (VOF) modellen. RNG k-ε turbulensmodellen användes även för att beräkna den kinetiska energin av turbulas och dess dissipationshastighet. Detta för att oönskade hydrauliska fenomen har uppmärksammats hos sedimenteringsbassängen hos avloppsreningsverket. För att minska flödeshastigheten och turbulens föreslås två optimeringsmetoder, vilket är att installera skärm och att ändra inloppets hastighet. Eeffekterna av de olika metoderna jämförs med hjälp av hastighets- och kinetisk energiprofiler. Det visar sig att båda metoderna kan ge gynsammare tillstånd för sedimentering av partikelar. Som avslutning ges prognos för den fortsatta forskningen och arbetsriktningen inom ämnet.
2

Structural intrusion, flow disturbance and spillway capacity : CFD modeling of the Torpshammar dam

Wallin, Adéle January 2018 (has links)
At the Torpshammar dam two rectangular beams are situated upstream of the spillway gates to stabilize the sidewalls holding the embankment of the dam. A computational fluid dynamics (CFD) simulation of the dam with the bottom outlets open was made to investigate how the flow and discharge capacity is affected by the beams. The results can be used to avoid unexpected consequences due to turbulence caused by the beams, make the beams strong enough to hold the pressure from the flow and get an estimation of the discharge capacity with the beams. Turbulence is one of the hardest things to simulate so the results were compared with previous simulation work made without the beams and physical model tests to validate the results. Also, a sensitivity analysis was made to investigate the method used. The beams lowered the velocity (to 17 m/s) and the discharge capacity (to 255 m3/s) compared to the previous work. The force on the beams was directed upward and downstream. The beams increased the turbulence and the vortex shedding frequency was higher for the beam closest to the outlet. The velocity and discharge capacity differed with 6 % compared to model test results. The results can therefore only be used as an estimation, a more detailed computational model and more computational cells are needed to get a better result. The sensitivity analysis showed that the velocity and turbulence depend on the method and further studies need to be made to decide which method gives the closest similarity with reality.
3

Numerical modeling of flow in continuous bends from Daliushu to Shapotou in Yellow River

Jing, H., Li, C., Guo, Yakun, Zhu, L., Li, Y. January 2014 (has links)
Yes / The upper reach of the Yellow River from Daliushu to Shapotou consists of five bends and has complex topography. A two-dimensional Re-Normalisation Group (RNG) k-ε model was developed to simulate the flow in the reach. In order to take the circulation currents in the bends into account, the momentum equations were improved by adding an additional source term. Comparison of the numerical simulation with field measurements indicates that the improved two-dimensional depth-averaged RNG k-ε model can improve the accuracy of the numerical simulation. A rapid adaptive algorithm was constructed, which can automatically adjust Manning's roughness coefficient in different parts of the study river reach. As a result, not only can the trial computation time be significantly shortened, but the accuracy of the numerical simulation can also be greatly improved. Comparison of the simulated and measured water surface slopes for four typical cases shows that the longitudinal and transverse slopes of the water surface increase with the average velocity upstream. In addition, comparison was made between the positions of the talweg and the main streamline, which coincide for most of the study river reach. However, deviations between the positions of the talweg and the main streamline were found at the junction of two bends, at the position where the river width suddenly decreases or increases. / National Natural Science Foundation of China (Grants No. 11361002 and 91230111), the Natural Science Foundation of Ningxia, China (Grant No. NZ13086), the Project of Beifang University of Nationalities, China (Grant No. 2012XZK05), the Foreign Expert Project of Beifang University of Nationalities, China, and the Visiting Scholar Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, China (Grant No. 2013A011).

Page generated in 0.0398 seconds