• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diversité et analyse fonctionnelle des systèmes Rap-Phr du groupe Bacillus cereus / Diversity and functional analysis of Rap-Phr systems from Bacillus cereus group

Cardoso, Priscilla 25 April 2019 (has links)
Le groupe Bacillus cereus est composé de huit espèces de bactéries à Gram positif sporulantes qui peuvent coloniser plusieurs niches écologiques. Les espèces les plus importantes sont B. cereus, une bactérie ubiquitaire du sol et un pathogène opportuniste; B. thuringiensis, un entomopathogène très utilisé comme biopesticide; et B. anthracis l’agent de la maladie du charbon. Bien que ces espèces présentent différents phénotypes, elles sont étroitement liées génétiquement et leurs facteurs de virulences principaux sont portés par des plasmides. Le cycle infectieux de B. thuringiensis dans la larve d’insecte est régulé par l’activation séquentielle de systèmes de quorum sensing de la famille RNPP. Parmi eux, les systèmes Rap-Phr, caractérisés chez B. subtilis, ont très peu été étudiés dans le groupe B. cereus. Ces systèmes régulent divers processus bactériens importants dont la sporulation. L’objectif de cette étude est d’analyser les systèmes Rap-Phr dans le groupe B. cereus, pour connaitre leur distribution, leur localisation et leur diversité afin d’obtenir une vue globale de ces systèmes chez ces bactéries. De plus, leur possible implication dans la régulation du processus de sporulation a été prédite sur la base de données structurales décrites chez RapH de B. subtilis. Les gènes rap, toujours associés à un gène phr, sont présents dans toutes les souches étudiées avec une moyenne de six gènes rap-phr par souche et avec 30% de ces systèmes qui sont portés par des plasmides. Les souches de B. thuringiensis portent six fois plus de systèmes Rap-Phr plasmidiques que les souches de B. cereus. Par ailleurs, les souches phylogénétiquement proches possèdent un profil de gènes rap-phr similaire. Un tiers des protéines Rap sont prédites pour inhiber la sporulation et ces protéines sont préférentiellement localisées sur les plasmides et donc plus fréquemment présentes chez B. thuringiensis que chez B. cereus. Cette prédiction a été partiellement validée par des tests de sporulation suggérant que les résidus impliqués dans cette activité chez B. subtilis sont conservés mais insuffisants pour prédire cette fonction. Le système Rap63-Phr63 porté par le plasmide pAW63 de la souche B. thuringiensis HD73 a ensuite été caractérisé. La protéine Rap63 a un effet modéré sur la sporulation et retarde l’expression des gènes régulés par Spo0A. La Rap63 est inhibée par son peptide Phr63, dont la forme mature correspond à l’extrémité C-terminale du pro-peptide. Les résultats de sporulation dans l’insecte suggèrent une activité synergique des systèmes Rap63-Phr63 et Rap8-Phr8 (porté par le pHT8_1) dans la régulation de la sporulation. Malgré la similarité entre les Phr63 et Phr8 aucun cross-talk n’a pu être mis en évidence, ce qui confirme la spécificité de ces systèmes de communication cellulaire. L’ensemble de ces résultats démontre la grande diversité des systèmes Rap-Phr dans le groupe B. cereus et souligne l’impact des systèmes plasmidiques dans le développement de ces bactéries. Par conséquent, les plasmides sont des éléments importants pour l’adaptation et la survie de ces bactéries et particulièrement pour B. thuringiensis. / The Bacillus cereus group of Gram positive spore forming bacteria is comprised by eight species that are able to colonize several ecological niches. The most important species are B. cereus, a ubiquitous soil bacterium and an opportunistic pathogen; B. thuringiensis, an entomopathogen widely used as biopesticide; and B. anthracis, the causative agent of anthrax. Even if they present different phenotypes, they are genetic closely related and their main virulence factors are encoded on plasmids. The infectious cycle of B. thuringiensis in the insect larvae is regulated by the sequential activation of quorum sensing systems from the RNPP family. Among them, the Rap-Phr was extensively studied in B. subtilis but just punctually in B. cereus group species. The Rap-Phr systems were shown to regulate various bacterial processes, including the sporulation. The objective of this study was to analyze the Rap-Phr systems in the B. cereus group, regarding their distribution, location and diversity to achieve an overview of these systems in these bacteria. Moreover, their possible involvement in the control of the sporulation process was predicted based on structural data described for RapH in B. subtilis. The rap genes, always associated with a phr gene, were present in all 49 studied strains with an average of six rap-phr genes per strain and 30% were located on plasmids. Comparison among B. cereus and B. thuringiensis strains revealed that the last one harbors six-fold more plasmid rap-phr system then the former. Moreover, phylogenetic closer strains possess a similar profile of rap-phr genes. Interestingly, 32% of the Rap proteins were predicted to inhibit sporulation and these proteins were preferentially located on plasmids and therefore in B. thuringiensis strains. This prediction was partially validated by sporulation efficiency assays suggesting that residues identified in B. subtilis as involved in the phosphatase activity are conserved but not sufficient to predict the sporulation function. Then, the plasmid-borne Rap63-Phr63 system from pAW63 plasmid of B. thuringiensis HD73 strain was further studied. The Rap63 protein moderately inhibits the sporulation and delays the expression of Spo0A-regulated genes. Rap63 is counteracted by its cognate Phr63 peptide, which mature form corresponds to the C-terminal end of the pro-peptide. Sporulation assays in insect larvae suggest a synergistic activity of Rap63-Phr63 and Rap8-Phr8 (from pHT8_1 of B. thuringiensis HD73 strain) systems on sporulation efficiency. Despite the similarities of Phr63 and Phr8 no cross-talk was found between these two systems, confirming their specificity. Altogether, these results reveal the high diversity of the Rap-Phr systems in the B. cereus group and highlight the relevance of the plasmid-borne systems to cell development. Therefore, the results demonstrated the importance of the plasmids in the adaptation and the survival of these bacteria, especially for B. thuringiensis.
2

Les régulateurs transcriptionnels Rgg. Confirmation de leur implication dans des phénomènes de quorum-sensing et identification de leurs cibles. / RGG transcriptional regulators. Confirmation of their involvement in quorum-sensing phenomenon and identification of their targets.

Fleuchot, Betty 06 December 2011 (has links)
La découverte d'un contexte génétique chez les streptocoques – codant un petit peptide hydrophobe (SHP) et un régulateur transcriptionnel appartenant à la famille Rgg –, suivi de l'étude d'un de ces loci chez S. thermophilus LMD-9, a conduit à l'hypothèse que les protéines régulatrices Rgg en association avec une phéromone putative SHP pourraient intervenir dans un mécanisme de type quorum-sensing (QS) chez les bactéries à Gram positif. La première partie de ma thèse a consisté à confirmer cette hypothèse sur le locus shp/rgg1358 de S. thermophilus LMD-9, espèce contenant le plus grand nombre de systèmes SHP/Rgg dans son génome. Pour ceci, les étapes impliquées dans un mécanisme de QS ont été étudiées : la sécrétion, la maturation et la détection à une concentration seuil de la phéromone, sa réimportation à l'intérieur de la cellule, son interaction avec un régulateur transcriptionnel et enfin l'interaction de la protéine régulatrice à l'ADN. Par l'utilisation d'approches génétiques et biochimiques, nous avons démontré l'existence d'un nouveau mécanisme de QS impliquant pour la première fois un régulateur transcriptionnel Rgg et une phéromone SHP, importée à l'intérieur de la cellule par le transporteur d'oligopeptides AmiCDEF. Le rôle de la protéase membranaire, Eep, a également été démontré dans la maturation de la phéromone, dont la forme mature a été déterminée par spectrométrie de masse et validée in vivo. Dans un second temps, nous avons exploré la fonctionnalité de ce nouveau mécanisme sur d'autres loci shp/rgg, dans le but d’étudier l'existence d’éventuels phénomènes de cross-talk entre les bactéries. L'étude de nouveaux loci, en système hétérologue chez S. thermophilus LMD-9, a permis d'étendre la fonctionnalité du mécanisme à deux systèmes SHP/Rgg de streptocoques pathogènes, à savoir S. agalactiae et S. mutans. En parallèle à ce travail de caractérisation, l'identification des régulons des systèmes SHP/Rgg a été entreprise. La construction d'un arbre phylogénétique des protéines Rgg-like a permis d'identifier 68 systèmes SHP/Rgg, que nous avons classés en trois groupes. L'analyse des régions promotrices des gènes shp a conduit à l'identification d'un site putatif de liaison des protéines Rgg à l'ADN spécifiques de chaque groupe SHP/Rgg. Une approche in silico a ensuite été menée afin de rechercher, dans les génomes séquencés de streptocoques, les gènes cibles putatifs. Alors que des cibles proximales ont été détectées pour les groupes II et III, des cibles distales ont été identifiées dans les groupes I et II. Actuellement, la validation de certaines cibles est en cours au laboratoire. A l'avenir, ce travail pourrait permettre le développement de petits peptides permettant d'optimiser l'utilisation de S. thermophilus en industries laitières et de réduire la virulence des streptocoques pathogènes. / The discovery of a genetic context – encoding a small hydrophobic peptide (SHP) and a transcriptional regulator belonging to the Rgg family (in nearly all streptococcal genomes) –, following by the study of one of this loci in S. thermophilus LMD-9, led to the hypothesis that the regulatory proteins Rgg in association with a putative pheromone SHP could define a novel quorum-sensing (QS) regulatory mechanism in Gram-positive bacteria. The first part of my PhD consisted to validate this hypothesis. For this purpose, we analyzed the SHP/Rgg system in all the steps that are commonly involved in QS mechanisms: (i) secretion of the putative pheromone, (ii) maturation of the pheromone, (iii) capture of the pheromone from the external environment at a threshold concentration, (iv) importation of the pheromone inside the cell and (v) interaction of the transcriptional regulator to the promoter regions of targeted genes. Experimentally, we focused on the so-called shp/rgg1358 locus of S. thermophilus LMD-9, which is the streptococcal species containing the largest number of shp/rgg pairs in its genome. By using genetic and biochemistry approaches, we uncovered a new QS mechanism that involves the pheromone SHP, the oligopeptide transporter AmiCDEF for the uptake of the pheromone and the transcriptional regulator Rgg for the control of target gene expression. Furthermore, we showed that the membrane protease Eep participates in the production of the mature pheromone, which has been identified by mass spectrometry. Once characterized, the second part of my PhD was to explore the functionality of this new QS system in other streptococcal strain or species, in order to determine if cross-reactivity phenomenon between streptococci can occur. By using heterologous expression in S. thermophilus LMD-9, we extended the functionality of the SHP/Rgg system to two pathogenic streptococcal species, i.e. S. agalactiae and S. mutans. The last part of my PhD consisted in identifying the regulon of all SHP/Rgg systems. Following the construction of a phylogenetic tree of the Rgg-like proteins in low GC Gram-positive bacteria, we identified 68 SHP/Rgg systems that we classified in three groups. Analyzing the promoter regions of all shp genes led to the identification of a putative Rgg DNA binding site specific to each SHP/Rgg group. An in silico approach was used to scan all sequenced streptococcal genomes for the three identified patterns. Whereas proximal target genes were detected for groups II and III, distal target genes were found in groups I and II. In addition, we uncovered that putative Rgg DNA binding sites can be localized in coding or non-coding region. Currently, validations are in progress. To sum-up, my PhD studies provided evidences that the Rgg proteins in association with small peptide pheromones define a new QS mechanism that seems to regulate the expression of distal and proximal genes in a species-dependent manner. Important insights should be obtained concerning a putative crosstalk among streptococci that involves the SHP/Rgg QS system. My studies may constitute a basis for the development of small peptides to optimize the use of S. thermophilus in dairy factories and reduce the virulence of pathogenic streptococci.

Page generated in 0.1586 seconds