• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chemically Modified Oligonucleotides: Synthesis, Physicochemical and Biochemical Properties of their Duplexes with DNA and RNA

Pradeepkumar, Pushpangadan Indira January 2004 (has links)
<p>This thesis is based on 9 papers dealing with the synthesis, physicochemical and biochemical properties of two types of chemically modified oligonucleotides which have the potential to down-regulate gene expression: (i) The first set is comprised of antisense oligonucleotides (AONs) conjugated with different chromophores of varying size, charge and π-electron density. Conjugation of the chromophores at the 3'- or 5'-end enhanced the target RNA binding affinity and RNase H recruitment capabilities compared to the native counterpart without changing the global helical conformation of their AON/RNA hybrid duplexes. The 3'-dipyridophenazine (DPPZ) has emerged as the most promising non-toxic chromophore in this series. (ii) The second set encompasses a new class of AONs containing <i>North</i>-<i>East</i> conformationally constrained 1',2'-oxetane-nucleosides. The introduction of oxetane-<b>T</b> and -<b>C</b> units imparts lowering of the T<sub>m</sub> by ~ 6º and ~ 3 ºC/modification, respectively, of the AON/RNA hybrids, whereas the incorporation of the corresponding oxetane-<b>A</b> and-<b>G</b> units into AONs did not alter the thermostability in comparison with that of the native hybrid duplex. The oxetane-modified AONs have been found to possess enhanced serum stability compared to that of the native, whereas oxetane-<b>T</b> and -<b>C</b> containing AONs were more endonuclease-resistant than oxetane-<b>A</b> and-<b>G</b> modified AONs. All oxetane-modified mixmer AON/ RNA hybrid duplexes were, however, found to be excellent substrates for RNase H cleavage, which has been analyzed by Michaelis-Menten kinetics. The oxetane-modified mixmer AONs have shown effective down-regulation of the proto-oncogene c-myb mRNA in the K562 human leukemia cells, which was analyzed by QRT-PCR and Western Blot. Based on the amount of AON uptake after delivery, determined by slot blot, it was apparent that the oxetane-modified AONs are 5-6 times more effective antisense agents than the corresponding isosequential phosphorothioate analogues. The electrochemical assay based on sensitive nucleic acid mediated charge transport (CT) has revealed that the presence of oxetane-<b>T</b> unit causes more stacking perturbations in a DNA/DNA duplex than in a DNA/RNA duplex. </p>
12

Targeting RNA by the Antisense Approach and a Close Look at RNA Cleavage Reaction

Barman, Jharna January 2007 (has links)
This thesis summarizes the results of studies on two aspects of nucleic acids. Chemically modified antisense oligonucleotides (AONs) have been evaluated with regards to their suitability for mRNA targeting in an antisense approach (Paper I – III). The chemically modified nucleotidic units 2'-O-Me-T, 2'-O-MOE-T, oxetane-T, LNA-T, azetidine-T, aza-ENA-T, carbocyclic-ENA-T and carbocyclic-LNA-T were incorporated into 15-mer AONs and targeted against a 15-mer RNA chosen from the coding region of SV-40 large T antigen. The comparative study showed that a single modified nucleotide in the AON with North-East locked sugar (oxetane-T and azetidine-T) lowered the affinity for the complementary RNA whereas North locked sugars (LNA-T, aza-ENA-T, carbocyclic-ENA-T, and carbocyclic-LNA-T) significantly improved the affinity. A comparative RNase H digestion study showed that modifications of the same type (North-East type or North type) in different sequences gave rise to similar cleavage patterns. Determination of the Michaelis-Menten parameters by kinetic experiments showed that the modified AONs recruit RNase H resulting in enhanced turnover numbers (kcat) although with weaker enzyme-substrate binding (1/Km) compared to the unmodified AON. The modified AONs were also evaluated with regards to resistance towards snake venom phosphodiesterase and human serum to estimate their stability toward exonucleases. The aza-ENA-T and carbocyclic-ENA-T modified AONs showed improved stability compared to all other modified AONs. In general, the modified AONs with North type nucleotides (except LNA-T) were found to be superior to the North-East type as they showed improved target affinity, comparable RNase H recruitment capability and improved exonuclease stability. The second aspect studied in this thesis is based on physicochemical studies of short RNA molecules utilizing NMR based pH titration and alkaline hydrolysis reactions (Paper IV – V). The NMR based (1H and 31P) pH titration studies revealed the effect of guaninyl ion formation, propagated electrostatically through a single stranded chain in a sequence dependent manner. The non-identical electronic character of the internucleotidic phosphodiesters was further verified by alkaline hydrolysis experiments. The internucleotidic phosphodiesters, which were influenced by guaninyl ion formation, were hydrolyzed at a faster rate than those sequences where such guaninyl ion formation was prevented by replacing G with N1-Me-G.
13

Chemically Modified Oligonucleotides: Synthesis, Physicochemical and Biochemical Properties of their Duplexes with DNA and RNA

Pradeepkumar, Pushpangadan Indira January 2004 (has links)
This thesis is based on 9 papers dealing with the synthesis, physicochemical and biochemical properties of two types of chemically modified oligonucleotides which have the potential to down-regulate gene expression: (i) The first set is comprised of antisense oligonucleotides (AONs) conjugated with different chromophores of varying size, charge and π-electron density. Conjugation of the chromophores at the 3'- or 5'-end enhanced the target RNA binding affinity and RNase H recruitment capabilities compared to the native counterpart without changing the global helical conformation of their AON/RNA hybrid duplexes. The 3'-dipyridophenazine (DPPZ) has emerged as the most promising non-toxic chromophore in this series. (ii) The second set encompasses a new class of AONs containing North-East conformationally constrained 1',2'-oxetane-nucleosides. The introduction of oxetane-<b>T</b> and -<b>C</b> units imparts lowering of the Tm by ~ 6º and ~ 3 ºC/modification, respectively, of the AON/RNA hybrids, whereas the incorporation of the corresponding oxetane-<b>A</b> and-<b>G</b> units into AONs did not alter the thermostability in comparison with that of the native hybrid duplex. The oxetane-modified AONs have been found to possess enhanced serum stability compared to that of the native, whereas oxetane-<b>T</b> and -<b>C</b> containing AONs were more endonuclease-resistant than oxetane-<b>A</b> and-<b>G</b> modified AONs. All oxetane-modified mixmer AON/ RNA hybrid duplexes were, however, found to be excellent substrates for RNase H cleavage, which has been analyzed by Michaelis-Menten kinetics. The oxetane-modified mixmer AONs have shown effective down-regulation of the proto-oncogene c-myb mRNA in the K562 human leukemia cells, which was analyzed by QRT-PCR and Western Blot. Based on the amount of AON uptake after delivery, determined by slot blot, it was apparent that the oxetane-modified AONs are 5-6 times more effective antisense agents than the corresponding isosequential phosphorothioate analogues. The electrochemical assay based on sensitive nucleic acid mediated charge transport (CT) has revealed that the presence of oxetane-<b>T</b> unit causes more stacking perturbations in a DNA/DNA duplex than in a DNA/RNA duplex.
14

Conformationally Constrained Nucleosides : Design, Synthesis, and Biochemical Evaluation of Modified Antisense Oligonucleotides

Varghese, Oommen P. January 2007 (has links)
This thesis is concerned with synthesis, structure and biochemical analysis of chemically modified oligonucleotides with potential therapeutic applications. The three types of chemical modifications described here are: (a) A North-East locked 1',2'-azetidine nucleoside (b) A North locked 2',4'-cyanomethylene bridged nucleoside and (c) A 2',4'-aza-ENA-T nucleoside. The synthesis of the 1',2'-azetidine fused nucleosides was described using two different approaches. A highly strained 2',4'-cyanomethylene locked nucleoside was synthesized but could not be converted to the phosphoramidite derivative due to instability during derivatization. The key cyclization step in the aza-ENA-T nucleoside synthesis gave rise to two separable diastereomers due to chirality at the exocyclic nitrogen. Conversion of diastereomer 55 to 56 occurred with a large free energy of activation (ΔG‡ = 23.4 kcal mol-1 at 298 K in pyridine-d5). Of the two isomers the equatorial NH product was more stable than the axial one due to reduced 1,3 diaxial interactions. As a result, all NH axial product was converted to the equatorial isomer during subsequent steps in the synthesis. NMR and ab initio experiments confirmed the North-East structure of the 1',2'-azetidine locked nucleoside and North conformation of aza-ENA-T locked nucleosides with a chair conformation of the piperidine ring. The amino modified nucleosides were incorporated into different positions of a 15mer oligonucleotide. The azetidine modified AONs did not form stable duplexes with complementary RNA (ΔTm ~-1 to -4 °C), but they performed better than previously synthesized isosequential 1',2'-oxetane modified oligonucleotides. The 2',4'-aza-ENA-T modified oligonucleotide, on the other hand, showed excellent target affinity with complementary RNA (ΔTm ~+4 °C). The azetidine and aza-ENA-T modified oligonucleotides showed significant stability in the presence of human serum and snake venom phosphodiesterase (3'-exonuclease) as compared to the unmodified native sequence. The singly modified 15mer oligonucleotides were also subjected to RNase H promoted digestion in order to evaluate their potential as effective antisense agents. The effective enzyme activity (kcat/Km) was found to be lower in the modified AONs due to reduced enzyme-substrate binding. However, the catalytic activity of RNase H with these modified-AON:RNA duplexes were higher than observed with the native duplex.
15

Conformationally Constrained Nucleosides, Nucleotides and Oligonucleotides : Design, Synthesis and Properties

Honcharenko, Dmytro January 2008 (has links)
This thesis is based on six original research publications describing synthesis, structure and physicochemical and biochemical analysis of chemically modified oligonucleotides (ONs) in terms of their potential diagnostic and therapeutic applications. Synthesis of two types of bicyclic conformationally constrained nucleosides, North-East locked 1',2'-azetidine and North locked 2',4'-aza-ENA, is described. Study of the molecular structures and dynamics of bicyclic nucleosides showed that depending upon the type of fused system they fall into two distinct categories with their respective internal dynamics and type of sugar conformation. The physicochemical properties of the nucleobases in the conformationally constrained nucleosides found to be depended on the site and ring-size of the fused system. The incorporation of azetidine modified nucleotide units into 15mer ONs lowered the affinity toward the complementary RNA. However, they performed better than previously reported isosequential 1',2'-oxetane modified analogues. Whereas aza-ENA-T modification incorporated into ONs significantly enhanced affinity to the complementary RNA. To evaluate the antisense potential of azetidine-T and aza-ENA-T modified ONs, they were subjected to RNase H promoted cleavage as well as tested towards nucleolytic degradation. Kinetic experiments showed that modified ONs recruit RNase H, however with lower enzyme efficiency due to decreased enzyme-substrate binding affinity, but with enhanced turnover number. Both, azetidine-T and aza-ENA-T modified ONs demonstrated improved 3'-exonuclease stability in the presence of snake venom phosphodiesterase and human serum compared to the unmodified sequence. Oligodeoxynucleotides (ODNs) containing pyrene-functionalized azetidine-T (Aze-pyr X) and aza-ENA-T (Aza-ENA-pyr Y) modifications showed different fluorescence properties. The X modified ODNs hybridized to the complementary DNA and RNA showed variable increase in the fluorescence intensity depending upon the nearest-neighbor at the 3'-end to X modification (dA &gt; dG &gt; dT &gt; dC) with high fluorescence quantum yield. However, the Y modified ODNs showed a sensible enhancement of the fluorescence intensity only with complementary DNA. Also, the X modified ODN showed decrease (~37-fold) in the fluorescence intensity upon duplex formation with RNA containing a G nucleobase mismatch opposite to the modification site, whereas a ~3-fold increase was observed for the Y modified probe.

Page generated in 0.037 seconds