1 |
Development of a Real-Time Simulation Model in RSCAD of a STATCOM and its Control SystemRedander, Jessica, Lenárd, Johanna January 2021 (has links)
The development of interconnected power systems together with an increasing number of renewable non-synchronous power sources, create major challenges for the power system to meet the voltage stability and power quality requirements. One way to increase the voltage stability in a sustainable way is to locally implement a STATCOM. By enhancing grid voltage stability under varying network conditions, the active power transfer capability will increase. However, before a STATCOM can be deployed in the power system, the behavior of it needs tobe investigated for the specific network conditions at the point of interface. The thesis develops a software model in RSCAD of a STATCOM along with important control functions for real-time simulations in RTDS without hardware-in-the-loop. The model aims to be sufficient for representing the gross behavior of a STATCOM in real-time simulations in order to get a quick overview of the dynamic response of the system. The model’s overall performance is evaluated through simulations in RTDS. The results indicate that the main control functions are operating in a stable and sufficient way. Hence, the model can perform in different operation modes as well as handling unbalances that are introduced in the system without losing controllability. There is potential for improvements in order to obtain a model with a more sophisticated control system. The main area would be to introduce limiters and anti-windups at appropriate places as well as a fault-ride-through logic to ensure a safe and stable operation during disturbances.
|
Page generated in 0.0144 seconds