1 |
Power estimation of microprocessorsSambamurthy, Sriram 13 December 2010 (has links)
The widespread use of microprocessor chips in high performance applications like
graphics simulators and low power applications like mobile phones, laptops,
medical applications etc. has made power estimation an important step in the
manufacture of VLSI chips. It has become necessary to estimate the power
consumption not only after the circuits have been laid out, but also during the
design of the modules of the microprocessor at higher levels of design
abstraction.
The design of a microprocessor is complex and is performed at multiple layers of
abstraction before it finally gets manufactured. The processor is first
conceptually designed using blocks at the system level, and then modeled using a
high-level language (C, C++, SystemC). This enables the early development of
software applications using these high-level models. The C/C++ model is then
translated to a hardware description language (HDL), that typically corresponds
to the register transfer level (RT-Level). Once the processor is defined at the
RT-Level, it is synthesized into gates and state elements based on user-defined
constraints. In this thesis, novel techniques to estimate the power consumed by
the microprocessor circuits at the gate level and RT-level of abstraction are
presented.
At the gate level, the average power consumed by microprocessor circuits is
straight-forward to estimate, as the implementation is known. However,
estimating the maximum or peak instantaneous power consumed by the
microprocessor as a whole, when it is executing instructions, is a hard problem
due to the high complexity of the state space involved. An hierarchical approach
to estimate the peak power using powerful search techniques and formal tools is
presented in this thesis. This approach has been extended and applied to solve
the problem of estimating the maximum supply drop. Details on this extension and
a discussion of promising results are also presented. In addition, this approach
has been applied to explore the possibility of minimizing the leakage component
of power dissipation, when the processor is idle.
At the register transfer level, estimating the average power consumed by the
circuits of the microprocessor is by itself a challenging problem. This is due
to the fact that their implementation is unknown at this level of abstraction.
The average power consumption directly depends on the implementation. The
implementation, in turn, depends on the performance constraint imposed on the
microprocessor. One of the factors affecting the performance of the
microprocessor, is the speed of operation of its circuits. Considering these
factors and dependencies (for making early design decisions at the RT-Level), a
methodology that estimates the power vs. delay curves of microprocessor circuits
has been developed. This will enable designers to make design decisions for even
rudimentary designs without going through the time consuming process of
synthesis. / text
|
2 |
Mixed RTL and gate-level power estimation with low power design iteration / Lågeffektsestimering på kombinerad RTL- och grind-nivå med lågeffekts design iterationNilsson, Jesper January 2003 (has links)
<p>In the last three decades we have witnessed a remarkable development in the area of integrated circuits. From small logic devices containing some hundred transistors to modern processors containing several tens of million transistors. However, power consumption has become a real problem and may very well be the limiting factor of future development. Designing for low power is therefore increasingly important. To accomplice an efficient low power design, accurate power estimation at early design stage is essential. The aim of this thesis was to set up a power estimation flow to estimate the power consumption at early design stage. The developed flow spans over both RTL- and gate-level incorporating Mentor Graphics Modelsim (RTL-level simulator), Cadence PKS (gate- level synthesizer) and own developed power estimation tools. The power consumption is calculated based on gate-level physical information and RTL- level toggle information. To achieve high estimation accuracy, real node annotations is used together with an own developed on-chip wire model to estimate node voltage swing. </p><p>Since the power estimation may be very time consuming, the flow also includes support for low power design iteration. This gives efficient power estimation speedup when concentrating on smaller sub- parts of the design.</p>
|
3 |
Mixed RTL and gate-level power estimation with low power design iteration / Lågeffektsestimering på kombinerad RTL- och grind-nivå med lågeffekts design iterationNilsson, Jesper January 2003 (has links)
In the last three decades we have witnessed a remarkable development in the area of integrated circuits. From small logic devices containing some hundred transistors to modern processors containing several tens of million transistors. However, power consumption has become a real problem and may very well be the limiting factor of future development. Designing for low power is therefore increasingly important. To accomplice an efficient low power design, accurate power estimation at early design stage is essential. The aim of this thesis was to set up a power estimation flow to estimate the power consumption at early design stage. The developed flow spans over both RTL- and gate-level incorporating Mentor Graphics Modelsim (RTL-level simulator), Cadence PKS (gate- level synthesizer) and own developed power estimation tools. The power consumption is calculated based on gate-level physical information and RTL- level toggle information. To achieve high estimation accuracy, real node annotations is used together with an own developed on-chip wire model to estimate node voltage swing. Since the power estimation may be very time consuming, the flow also includes support for low power design iteration. This gives efficient power estimation speedup when concentrating on smaller sub- parts of the design.
|
Page generated in 0.1115 seconds