• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Digital impulse radar for glaciology : instrumentation, modelling, and field studies

Jones, Francis Hugh Melvill January 1987 (has links)
Several aspects of impulse radar echo sounding of small glaciers are investigated. First, the ranges of values expected for conductivity and relative dielectric permittivity of glacier ice, glacier bed materials and mixtures of ice and rock are established. These parameters, and the fundamentals of electromagnetic wave propagation, are employed in a modelling scheme that examines the reflection of pulses from planar reflectors within the glacier. The glacier bed can be modelled as solid rock or unconsolidated debris and as either frozen or wet. A layer of mixed ice and rock between the glacier ice and bed can also be included. Signal enhancement, especially using multi-channel principal component analysis, is discussed. Discussion of practical application of the technique begins with the description of a portable microprocessor-controlled instrument capable of recording digitized echograms. Then results from experiments on Trapridge Glacier, Yukon Territory are presented. Surveys up to half a kilometer long with soundings at 1 to 20 m intervals were conducted. Bed topography is presented and locally anomalous sections are examined. Smaller-scale parameters such as the attenuation constant of ice and reflector properties are also extracted from the data. Subglacial and englacial temporal variations were studied by automatically recording echoes at one location every 20 minutes over a three-day period. Such experiments are to be used in the future in conjunction with other, concurrent, geophysical and hydrological investigations. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
2

Evolving subglacial water systems in East Antarctica from airborne radar sounding

Carter, Sasha Peter, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
3

Temporal fluctuations in the motion of Arctic ice masses from satellite radar interferometry

Palmer, Steven J. January 2010 (has links)
This thesis considers the use of Interferometric Synthetic Aperture Radar (InSAR) for surveying temporal fluctuations in the velocity of glaciers in the Arctic region. The aim of this thesis is to gain a broader understanding of the manner in which the flow of both land- and marine-terminating glaciers varies over time, and to asses the ability of InSAR to resolve flow changes over timescales which provide useful information about the physical processes that control them. InSAR makes use of the electromagnetic phase difference between successive SAR images to produce interference patterns (interferograms) which contain information on the topography and motion of the Earth's surface in the direction of the radar line-of-sight. We apply established InSAR techniques (Goldstein et al., 1993) to (i) the 925 km2 LangjÖkull Ice Cap (LIC) in Iceland, which terminates on land (ii) the 8 500 km2 Flade Isblink Icecap (FIIC) in Northeast Greenland which has both land- and marine-terminating glaciers and (iii) to a 7 000 km2 land-terminating sector of the Western Greenland Ice Sheet (GrIS). It is found that these three regions exhibit velocity variations over contrasting timescales. At the LIC, we use an existing ice surface elevation model and dual-look SAR data acquired by the European Remote Sensing (ERS) satellite to estimate ice velocity (Joughin et al., 1998) during late-February in 1994. A comparison with direct velocity measurements determined by global positioning system (GPS) sensors during the summer of 2001 shows agreement (r2 = 0.86), suggesting that the LIC exhibits moderate seasonal and inter-annual variations in ice flow. At the FIIC, we difference pairs of interferograms (Kwok and Fahnestock, 1996) formed using ERS SAR data acquired between 15th August 1995 and 3rd February 1996 to estimate ice velocity on four separate days. We observe that the flow of 5 of the 8 outlet glaciers varies in latesummer compared with winter, although flow speeds vary by up to 20 % over a 10 day period in August 1995. At the GrIS, we use InSAR (Joughin et al., 1996) and ERS SAR data to reveal a detailed pattern of seasonal velocity variations, with ice speeds in latesummer up to three times greater than wintertime rates. We show that the degree of seasonal speedup is spatially variable and correlated with modeled runoff, suggesting that seasonal velocity changes are controlled by the routing of water melted at the ice sheet surface. The overall conclusion of this work is that the technique of InSAR can provide useful information on fluctuations in ice speed across a range of timescales. Although some ice masses exhibit little or no temporal flow variability, others show marked inter-annual, seasonal and even daily variations in speed. We observe variations in seasonality in ice flow over distances of ~ 10 km and over time periods of ~10 days during late-summer. With the aid of ancillary meteorological data, we are able to establish that rates of flow in western Greenland are strongly moderated by the degree of surface melting, which varies seasonally and secularly. Although the sampling of our data is insufficiently frequent and spans too brief a period for us to derive a general relationship between climate and seasonality of flow, we show that production of meltwater at the ice surface and its delivery to the ice bed play an important role in the modulation of horizontal flow speeds. We suggest that a similarly detailed investigation of other ice masses is required to reduce the uncertainty in predictions of the future Arctic land-ice contribution to sea level in a warming world.
4

Interpretation of ice sheet stratigraphy : a radio-echo sounding study of the Dyer Plateau, Antarctica /

Weertman, Bruce Randall. January 1993 (has links)
Thesis (Ph. D.)--University of Washington, 1993. / Vita. Includes bibliographical references (leaves [131]-137).
5

Tracing of internal layers in radar echograms from a Greenland study region

Gao, Xin. January 2006 (has links)
Thesis (M.S.) University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research .pdf file viewed on (June 25, 2007) Includes bibliographical references.
6

Evolving subglacial water systems in East Antarctica from airborne radar sounding

Carter, Sasha Peter, 1977- 06 September 2012 (has links)
The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than --10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution. In the bedrock trough of Adventure Subglacial Trench, analysis of satellite altimetry is combined with radar sounding data to calculate a mass budget and infer a flow mechanism for a two cubic kilometer discharge reported to have traveled between two lakes in the region from 1996 -1998. The volume released from the source lake exceeded the volume received by the destination lakes by one and a tenth cubic kilometers, indicating that some water must have escaped downstream from the lowest destination lake over the course of the event. Release of water from the source lake preceded arrival of the water at the destination lakes, 260 kilometers away, by about three months. Water continued draining from the destination lakes for several years after surface subsidence at the source lake had ceased. By 2003, a total of one and a half cubic km or nearly 75% of the water released by the source lake had traveled downstream from the destination lakes. Hydraulic modeling work indicates that the initial release of water from the source lake could have been accommodated by a self-enlarging semicircular channel. Subsequent evolution of the discharge and the three-month delay between release of water from the source lake and arrival of that water at the destination lakes indicates that a shallower and broader distributed water system is responsible for the transport of subglacial water in this region. Such a system would be more stable for the given icebedrock geometry and may explain the observations of intermittent flat bright bedrock reflections in radar data acquired upstream from the destination lake in 2000. For the purpose of better understanding the long-term water budget of the Dome C region, an area upstream of Adventure Trench, eleven dated isochronal internal layers within the ice penetrating radar data were tracked. An age-depth relationship, derived from the European ice core through Dome C is used to calculate strain, estimate melt, model ice temperature, and determine absolute basal reflectivity for the entire region which covers over 28,000 square kilometers. The two largest subglacial lakes within the survey, Concordia and Vincennes, are both associated with enhanced basal melting on their upstream shores at rates locally greater than two millimeters per year. Widely distributed melt rates in the major topographic valleys upstream of these lakes are generally less than one millimeter per year throughout the region with slightly higher melts in the basin draining into Vincennes Subglacial Lake. Although published estimates for geothermal flux are capable of explaining the behavior of ice and water in most of the area, an additional source of basal heat is required to explain melt anomalies and subglacial lakes along the Concordia Ridge. Lake Concordia is expected to discharge water on a similar scale and duration as that observed in Adventure Trench, with a repeat cycle of a few hundred years. / text
7

Spatial and temporal variations of basal conditions beneath glaciers and ice sheets inferred from radio echo-sounding measurements /

Gades, Anthony M. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (p. [147]-158).

Page generated in 0.0541 seconds