• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation moléculaire de la modulation spatio-temporelle des fonctions du phagosome

Goyette, Guillaume 04 1900 (has links)
La phagocytose est un processus par lequel des cellules spécialisées du système immunitaire comme les macrophages ingèrent des microorganismes envahisseurs afin de les détruire. Les microbes phagocytés se retrouvent dans un compartiment intracellulaire nommé le phagosome, qui acquiert graduellement de nombreuses molécules lui permettant de se transformer en phagolysosome possédant la capacité de tuer et dégrader son contenu. L’utilisation de la protéomique a permis de mettre en évidence la présence de microdomaines (aussi nommés radeaux lipidiques ou radeaux membranaires) sur les phagosomes des macrophages. Notre équipe a démontré que ces radeaux exercent des fonctions cruciales au niveau de la membrane du phagosome. D’abord nous avons observé que la survie du parasite intracellulaire L. donovani est possible dans un phagosome dépourvu de radeaux lipidiques. Parallèlement nous avons constaté qu’un mutant de L. donovani n’exprimant pas de LPG à sa surface(LPG-) est rapidement tué dans un phagosome arborant des radeaux membranaires. Pour comprendre le mécanisme de perturbation des microdomaines du phagosome par la molécule LPG, nous avons provoqué la phagocytose de mutants LPG- du parasite et comparé par microscopie les différences avec le parasite de type sauvage. Nous avons ainsi démontré que le LPG de L. donovani est nécessaire et suffisant au parasite pour empêcher la maturation normale du phagosome. Nous avons également découvert que la molécule LPG permet d’empêcher la formation des radeaux lipidiques sur le phagosome et peut aussi désorganiser les radeaux lipidiques préexistants. Enfin, nous avons montré que l’action de LPG est proportionnelle au nombre d’unités répétitives de sucres (Gal(β1,4)-Manα1-PO4) qui composent cette molécule. Nos travaux ont démontré pour la première fois le rôle important de ces sous-domaines membranaires dans la maturation du phagosome. De plus, nos conclusions seront des pistes à suivre au cours des études cliniques ayant pour but d’enrayer la leishmaniose. Le second objectif de ce travail consistait à effectuer la caractérisation des radeaux lipidiques par une analyse protéomique et lipidomique à l’aide de la spectrométrie de masse. Nous avons ainsi entrepris l’identification systématique des protéines présentes dans les radeaux membranaires des phagosomes et ce, à trois moments clés de leurmaturation. Le traitement des phagosomes purifiés avec un détergent nous a permis d’isoler les «Detergent Resistent Membranes» (DRMs) des phagosomes, qui sont l’équivalent biochimique des radeaux membranaires. Nous avons ainsi établi une liste de 921 protéines associées au phagosome, dont 352 sont présentes dans les DRMs. Les protéines du phagosome sont partagées presque également entre trois tendances cinétiques (augmentation, diminution et présence transitoire). Cependant, une analyse plus spécifique des protéines des DRMs démontre qu’une majorité d’entre elles augmentent en fonction de la maturation. Cette observation ainsi que certains de nos résultats montrent que les radeaux lipidiques des phagosomes précoces sont soit très peu nombreux, soit pauvres en protéines, et qu’ils sont recrutés au cours de la maturation du phagosome. Nous avons aussi analysé les phospholipides du phagosome et constaté que la proportion entre chaque classe varie lors de la maturation. De plus, en regardant spécifiquement les différentes espèces de phospholipides nous avons constaté que ce ne sont pas uniquement les espèces majoritaires de la cellule qui dominent la composition de la membrane du phagosome. L’ensemble de nos résultats a permis de mettre en évidence plusieurs fonctions potentielles des radeaux lipidiques, lesquelles sont essentielles à la biogenèse des phagolysosomes (signalisation, fusion membranaire, action microbicide, transport transmembranaire, remodelage de l’actine). De plus, la cinétique d’acquisition des protéines de radeaux lipidiques indique que ceux-ci exerceraient leurs fonctions principalement au niveau des phagosomes ayant atteint un certain niveau de maturation. L’augmentation du nombre de protéines des radeaux membranaires qui s’effectue durant la maturation du phagosome s’accompagne d’une modulation des phospholipides, ce qui laisse penser que les radeaux membranaires se forment graduellement sur le phagosome et que ce ne sont pas seulement les protéines qui sont importées. / Macrophages are specialized cells of the immune system which mediate destruction and killing of invading micro-organisms. They do so by engulfing them by a process called phagocytosis. Microbes are then captured in an intracellular compartment, the phagosome, which gradually acquire molecules able to attack and degrade its cargo. Use of proteomics let us demonstrate the presence of flotillin-1 enriched microdomains (also called lipid rafts or membrane rafts) on the phagosomes. Our team demonstrated the crucial importance of these rafts in the phagocytosis process. Indeed, survival of L. donovani correlates with its presence in a ‘raftless’ phagosome while a mutated L. donovani without LPG is rapidly killed in a phagosome containing lipid rafts. To understand the membrane raft destabilisation mechanism mediated the LPG molecule, we induced phagocytosis of parasites devoid of LPG (LPG-) and compared it to the wild type parasite by microscopy. We first demonstrated that LPG alone is necessary to prevent normal maturation of the phagosome. Additionally, we discovered that the LPG molecule not only inhibits lipid rafts formation on the phagosome but also disorganise pre-existing lipid rafts. This effect of LPG is proportional to the number of repetitive sugar units (Gal( 1,4)-Man 1-PO4) which compose this molecule. Our work demonstrated for the first time an important role of the membrane rafts in the phagosome maturation. Moreover, our conclusions will give new interesting leads for clinical studies on leishmaniosis. The second goal of this work was to characterise them with proteomics and lipidomics tools. To do this, we undertook the systematic identification of proteins present on both subdomains of the phagosome (lipid rafts versus the rest of the phagosomal membrane). To achieve this, we purified phagosomes, from which we isolated lipid rafts by floating Triton X-100 insoluble membranes (DRMs for Detergent Insoluble Membranes). After that, we identified proteins by mass spectrometry.
2

La Rémorine, une protéine végétale impliquée dans la propagation virale ; implication des modifications post-traductionnelles / Remorin, a plant protein involved in virus movement; implication of the post-translational modifications

Perraki, Artemis 17 December 2012 (has links)
Les Rémorines (REM) du groupe 1 sont des protéines spécifiques du monde végétale. Malgré leur caractère hydrophile elles sont localisées à la membrane plasmique. La phosphorylation des REM serait potentiellement impliquée dans la signalisation précoce et la défense des végétaux contre les pathogènes. Benschop et al. (2007) détecte AtREM1.3 (Arabidopsis thaliana, groupe 1b) phosphorylée en réponse au traitement par l'éliciteur générale flg22, tandis que Widjaja et al. (2008) a suggéré que la phosphorylation de AtREM1.2 est potentiellement impliquée dans la signalisation précoce à l'infection par Pseudomonas syringae. La fonction précise de la phosphorylation des protéines REM du groupe 1 reste inconnue. Des travaux antérieurs dans le laboratoire ont montré que le mouvement du virus X de la pomme de terre (PVX) est inversement corrélée à l'accumulation de StREM1.3 (Solanum tuberosum) et que StREM1.3 peut interagir physiquement avec la protéine de mouvement TRIPLE GENE BLOC Protein 1 (TGBp1) du PVX (Raffaele et al., 2009). Dans ce travail, nous avons étudié les mécanismes qui sous-tendent les interactions REM-TGBp1 et nous avons essayé de caractériser biochimiquement la kinase qui phosphoryle REM. Les conséquences physiologiques de l'interaction TGBp1 / StREM1.3 et de la phosphorylation de REM en terme de propagation des virus, d’inactivation génique post-transcriptionnelle, de régulation de l’ouverture des plasmodesmes, et d’activation de kinase ont également été étudiés. / The group 1 Remorin (REM) proteins are plant-specific oligomeric proteins that have been reported to localize to the plasma membrane despite their overall hydrophilic nature. There is evidence that the REM protein phosphorylation is potentially implicated in the early signaling and defense. Benschop et al. (2007) detected the AtREM1.3 (Arabidopsis thaliana group 1b of REM protein family) to be phosphorylated in response to treatment with the general elicitor flg22, while the Widjaja et al. (2008) suggested that the phosphorylation of AtREM1.2 is potentially implicated in early signaling upon infection with Pseudomonas syringae. The precise exact function of the group 1 REM protein phosphorylation remains unknown. Previous work in the laboratory showed that Potato virus X (PVX) movement is inversely correlated to potato StREM1.3 accumulation and that StREM1.3 can physically interacts with the movement protein TRIPLE GENE BLOCK PROTEIN 1 (TGBp1) from PVX (Raffaele et al., 2009). In this work, we studied the mechanism underlying the REM-TGBp1 interactions and we tried to characterise biochemically the kinase that phosphorylate REM. The physiological consequences of TGBp1/ StREM1.3 interaction and REM phosphorylation in terms of virus spreading, post-transcriptional gene silencing, plasmodesmata gating, kinase activation were also investigated.
3

Caractérisation moléculaire de la modulation spatio-temporelle des fonctions du phagosome

Goyette, Guillaume 04 1900 (has links)
La phagocytose est un processus par lequel des cellules spécialisées du système immunitaire comme les macrophages ingèrent des microorganismes envahisseurs afin de les détruire. Les microbes phagocytés se retrouvent dans un compartiment intracellulaire nommé le phagosome, qui acquiert graduellement de nombreuses molécules lui permettant de se transformer en phagolysosome possédant la capacité de tuer et dégrader son contenu. L’utilisation de la protéomique a permis de mettre en évidence la présence de microdomaines (aussi nommés radeaux lipidiques ou radeaux membranaires) sur les phagosomes des macrophages. Notre équipe a démontré que ces radeaux exercent des fonctions cruciales au niveau de la membrane du phagosome. D’abord nous avons observé que la survie du parasite intracellulaire L. donovani est possible dans un phagosome dépourvu de radeaux lipidiques. Parallèlement nous avons constaté qu’un mutant de L. donovani n’exprimant pas de LPG à sa surface(LPG-) est rapidement tué dans un phagosome arborant des radeaux membranaires. Pour comprendre le mécanisme de perturbation des microdomaines du phagosome par la molécule LPG, nous avons provoqué la phagocytose de mutants LPG- du parasite et comparé par microscopie les différences avec le parasite de type sauvage. Nous avons ainsi démontré que le LPG de L. donovani est nécessaire et suffisant au parasite pour empêcher la maturation normale du phagosome. Nous avons également découvert que la molécule LPG permet d’empêcher la formation des radeaux lipidiques sur le phagosome et peut aussi désorganiser les radeaux lipidiques préexistants. Enfin, nous avons montré que l’action de LPG est proportionnelle au nombre d’unités répétitives de sucres (Gal(β1,4)-Manα1-PO4) qui composent cette molécule. Nos travaux ont démontré pour la première fois le rôle important de ces sous-domaines membranaires dans la maturation du phagosome. De plus, nos conclusions seront des pistes à suivre au cours des études cliniques ayant pour but d’enrayer la leishmaniose. Le second objectif de ce travail consistait à effectuer la caractérisation des radeaux lipidiques par une analyse protéomique et lipidomique à l’aide de la spectrométrie de masse. Nous avons ainsi entrepris l’identification systématique des protéines présentes dans les radeaux membranaires des phagosomes et ce, à trois moments clés de leurmaturation. Le traitement des phagosomes purifiés avec un détergent nous a permis d’isoler les «Detergent Resistent Membranes» (DRMs) des phagosomes, qui sont l’équivalent biochimique des radeaux membranaires. Nous avons ainsi établi une liste de 921 protéines associées au phagosome, dont 352 sont présentes dans les DRMs. Les protéines du phagosome sont partagées presque également entre trois tendances cinétiques (augmentation, diminution et présence transitoire). Cependant, une analyse plus spécifique des protéines des DRMs démontre qu’une majorité d’entre elles augmentent en fonction de la maturation. Cette observation ainsi que certains de nos résultats montrent que les radeaux lipidiques des phagosomes précoces sont soit très peu nombreux, soit pauvres en protéines, et qu’ils sont recrutés au cours de la maturation du phagosome. Nous avons aussi analysé les phospholipides du phagosome et constaté que la proportion entre chaque classe varie lors de la maturation. De plus, en regardant spécifiquement les différentes espèces de phospholipides nous avons constaté que ce ne sont pas uniquement les espèces majoritaires de la cellule qui dominent la composition de la membrane du phagosome. L’ensemble de nos résultats a permis de mettre en évidence plusieurs fonctions potentielles des radeaux lipidiques, lesquelles sont essentielles à la biogenèse des phagolysosomes (signalisation, fusion membranaire, action microbicide, transport transmembranaire, remodelage de l’actine). De plus, la cinétique d’acquisition des protéines de radeaux lipidiques indique que ceux-ci exerceraient leurs fonctions principalement au niveau des phagosomes ayant atteint un certain niveau de maturation. L’augmentation du nombre de protéines des radeaux membranaires qui s’effectue durant la maturation du phagosome s’accompagne d’une modulation des phospholipides, ce qui laisse penser que les radeaux membranaires se forment graduellement sur le phagosome et que ce ne sont pas seulement les protéines qui sont importées. / Macrophages are specialized cells of the immune system which mediate destruction and killing of invading micro-organisms. They do so by engulfing them by a process called phagocytosis. Microbes are then captured in an intracellular compartment, the phagosome, which gradually acquire molecules able to attack and degrade its cargo. Use of proteomics let us demonstrate the presence of flotillin-1 enriched microdomains (also called lipid rafts or membrane rafts) on the phagosomes. Our team demonstrated the crucial importance of these rafts in the phagocytosis process. Indeed, survival of L. donovani correlates with its presence in a ‘raftless’ phagosome while a mutated L. donovani without LPG is rapidly killed in a phagosome containing lipid rafts. To understand the membrane raft destabilisation mechanism mediated the LPG molecule, we induced phagocytosis of parasites devoid of LPG (LPG-) and compared it to the wild type parasite by microscopy. We first demonstrated that LPG alone is necessary to prevent normal maturation of the phagosome. Additionally, we discovered that the LPG molecule not only inhibits lipid rafts formation on the phagosome but also disorganise pre-existing lipid rafts. This effect of LPG is proportional to the number of repetitive sugar units (Gal( 1,4)-Man 1-PO4) which compose this molecule. Our work demonstrated for the first time an important role of the membrane rafts in the phagosome maturation. Moreover, our conclusions will give new interesting leads for clinical studies on leishmaniosis. The second goal of this work was to characterise them with proteomics and lipidomics tools. To do this, we undertook the systematic identification of proteins present on both subdomains of the phagosome (lipid rafts versus the rest of the phagosomal membrane). To achieve this, we purified phagosomes, from which we isolated lipid rafts by floating Triton X-100 insoluble membranes (DRMs for Detergent Insoluble Membranes). After that, we identified proteins by mass spectrometry.

Page generated in 0.0536 seconds