• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparação de arquiteturas de redes neurais para sistemas de reconheceimento de padrões em narizes artificiais

FERREIRA, Aida Araújo January 2004 (has links)
Made available in DSpace on 2014-06-12T15:58:28Z (GMT). No. of bitstreams: 2 arquivo4572_1.pdf: 1149011 bytes, checksum: 92aae8f6f9b5145bfcecb94d96dbbc0b (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2004 / Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco / Um nariz artificial é um sistema modular composto de duas partes principais: um sistema sensor, formado de elementos que detectam odores e um sistema de reconhecimento de padrões que classifica os odores detectados. Redes neurais artificiais têm sido utilizadas como sistema de reconhecimento de padrões para narizes artificiais e vêm apresentando resultados promissores. Desde os anos 80, pesquisas para criação de narizes artificiais, que permitam detectar e classificar odores, vapores e gases automaticamente, têm tido avanços significativos. Esses equipamentos podem ser utilizados no monitoramento ambiental para controlar a qualidade do ar, na área de saúde para realizar diagnóstico de doenças e nas indústrias de alimentos para o controle de qualidade e o monitoramento de processos de produção. Esta dissertação investiga a utilização de quatro técnicas diferentes de redes neurais para criação de sistemas de reconhecimento de padrões em narizes artificiais. O trabalho está dividido em quatro partes principais: (1) introdução aos narizes artificiais, (2) redes neurais artificiais para sistema de reconhecimento de padrões, (3) métodos para medir o desempenho de sistemas de reconhecimento de padrões e comparar os resultados e (4) estudo de caso. Os dados utilizados para o estudo de caso, foram obtidos por um protótipo de nariz artificial composto por um arranjo de oito sensores de polímeros condutores, expostos a nove tipos diferentes de aguarrás. Foram adotadas as técnicas Multi-Layer Perceptron (MLP), Radial Base Function (RBF), Probabilistic Neural Network (PNN) e Time Delay Neural Network (TDNN) para criar os sistemas de reconhecimento de padrões. A técnica PNN foi investigada em detalhes, por dois motivos principais: esta técnica é indicada para realização de tarefas de classificação e seu treinamento é feito em apenas um passo, o que torna a etapa de criação dessas redes muito rápida. Os resultados foram comparados através dos valores dos erros médios de classificação utilizando o método estatístico de Teste de Hipóteses. As redes PNN correspondem a uma nova abordagem para criação de sistemas de reconhecimento de padrões de odor. Estas redes tiveram um erro médio de classificação de 1.1574% no conjunto de teste. Este foi o menor erro obtido entre todos os sistemas criados, entretanto mesmo com o menor erro médio de classificação, os testes de hipóteses mostraram que os classificadores criados com PNN não eram melhores do que os classificadores criados com a arquitetura RBF, que obtiveram um erro médio de classificação de 1.3889%. A grande vantagem de criar classificadores com a arquitetura PNN foi o pequeno tempo de treinamento dos mesmos, chegando a ser quase imediato. Porém a quantidade de nodos na camada escondida foi muito grande, o que pode ser um problema, caso o sistema criado deva ser utilizado em equipamentos com poucos recursos computacionais. Outra vantagem de criar classificadores com redes PNN é relativa à quantidade reduzida de parâmetros que devem ser analisados, neste caso apenas o parâmetro relativo à largura da função Gaussiana precisou ser investigado

Page generated in 0.1055 seconds