• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulating a Heat And Moisture transfer Panel (HAMP) for maintaining space humidity

2012 September 1900 (has links)
The main objective of this thesis research is to test the applicability of a novel heat and moisture transfer panel (HAMP) in an office building to control the space humidity. A HAMP is a panel that uses a liquid desiccant to add or remove heat and moisture to or from a space. This thesis research uses the TRNSYS computer package to model an office building in four different cities representing four climatic conditions. The cities are Saskatoon, Saskatchewan; Chicago, Illinois; Phoenix, Arizona; and Miami, Florida; representing cold-dry, cool-humid, hot-dry, and hot-humid climates, respectively. The HAMP is employed in the office building with a radiant ceiling panel (RCP) system. Three other HVAC systems are examined and compared to the system employing the HAMP. The systems are: a conventional all-air system, a RCP system with 100% outdoor air, a RCP system with a parallel dedicated outdoor air system (DOAS), and the RCP system with the HAMP and 100% outdoor air. In the latter, the HAMP covers 10% of the ceiling area and uses lithium chloride solution as the liquid desiccant at different temperatures and concentrations. The results show that the HAMP is able to control the space humidity within the control limits in all climates. The HAMP also shows the ability to provide better humidity control than the other systems as it directly responds to the space latent loads. The HAMP is able to control the relative humidity between 26% RH and 62%, 24% RH and 57% RH, 27% RH and 60%, and 40% RH and 62% RH in Chicago, Saskatoon, Phoenix, and Miami, respectively. The HAMP is able to achieve a relative humidity of 35% in Chicago, Saskatoon, and Phoenix for 14%, 13%, and 20% of the working hours of the year, respectively. It is also able to achieve a relative humidity of 60% in Chicago, and Miami 10% and 55% of the working hours of the year, respectively. The results also show the potential of the RCP system with the HAMP to reduce the total energy consumed by a conventional all-air system in the hot climates by 40%, and 54% in Miami and Phoenix respectively, and in the cold climates by 14% and 23% in Saskatoon and Chicago, respectively.
2

Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit

Gong, Xiangyang 15 May 2009 (has links)
Radiant heating and cooling has a reputation of increasing the comfort level and reducing the energy consumption of buildings. The main advantages of radiant heating and cooling are low operational noise and reduced fan power cost. Radiant heating and cooling has been supplied in several forms, including floor heating, ceiling heating and cooling, radiant panels and façade heating and cooling. Among them, façade heating and cooling is the most recently developed system. This dissertation provides a comprehensive study of several technical issues relative to radiant heating and cooling systems that have received little attention in previous research. The following aspects are covered in this dissertation: First, a heat transfer model of mullion radiators, one type of façade heating and cooling, is developed and verified by measured performance data. The simulation demonstrates that the heating or cooling capacity of mullion radiators is a semi-linear function of supply water temperature and is affected by the thermal conductive resistance of mullion tubes, the room air temperature, the supply water flow rate, and the outside air temperature. Second, the impact of the positions of radiators on energy consumption and thermal comfort is studied. This dissertation compares the heating load and comfort level as measured by uniformity of operative temperature for two different layouts of radiators in the same geometric space. The air exchange rate has been identified as an important factor which affects energy saving benefits of the radiant heating systems. Third, the infiltration and the interaction of infiltration and mechanical ventilation air to produce moisture condensation in a radiantly cooled office are examined. The infiltration of the studied office is also explored by on-site blower door measurement, by analyzing measured CO2 concentration data, and through modeling. This investigation shows the infiltration level of the studied office to range between 0.46 and 1.03 air changes per hour (ACH). Fourth, the integrated sensible heating and cooling system is simulated and compared with a single duct variable air volume (VAV) system. The results show that, at the current infiltration level, the studied sensible heating and cooling system with an integrated active desiccant ventilation unit consumes 5.6% more primary energy than a single duct VAV system; it would consumes 11.4% less primary energy when the system is integrated with a presumed passive desiccant ventilation unit.
3

Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit

Gong, Xiangyang 15 May 2009 (has links)
Radiant heating and cooling has a reputation of increasing the comfort level and reducing the energy consumption of buildings. The main advantages of radiant heating and cooling are low operational noise and reduced fan power cost. Radiant heating and cooling has been supplied in several forms, including floor heating, ceiling heating and cooling, radiant panels and façade heating and cooling. Among them, façade heating and cooling is the most recently developed system. This dissertation provides a comprehensive study of several technical issues relative to radiant heating and cooling systems that have received little attention in previous research. The following aspects are covered in this dissertation: First, a heat transfer model of mullion radiators, one type of façade heating and cooling, is developed and verified by measured performance data. The simulation demonstrates that the heating or cooling capacity of mullion radiators is a semi-linear function of supply water temperature and is affected by the thermal conductive resistance of mullion tubes, the room air temperature, the supply water flow rate, and the outside air temperature. Second, the impact of the positions of radiators on energy consumption and thermal comfort is studied. This dissertation compares the heating load and comfort level as measured by uniformity of operative temperature for two different layouts of radiators in the same geometric space. The air exchange rate has been identified as an important factor which affects energy saving benefits of the radiant heating systems. Third, the infiltration and the interaction of infiltration and mechanical ventilation air to produce moisture condensation in a radiantly cooled office are examined. The infiltration of the studied office is also explored by on-site blower door measurement, by analyzing measured CO2 concentration data, and through modeling. This investigation shows the infiltration level of the studied office to range between 0.46 and 1.03 air changes per hour (ACH). Fourth, the integrated sensible heating and cooling system is simulated and compared with a single duct variable air volume (VAV) system. The results show that, at the current infiltration level, the studied sensible heating and cooling system with an integrated active desiccant ventilation unit consumes 5.6% more primary energy than a single duct VAV system; it would consumes 11.4% less primary energy when the system is integrated with a presumed passive desiccant ventilation unit.
4

Sálavé vytápění průmyslových hal / Radiant heating of industrial halls

Rybář, Jakub January 2012 (has links)
Indoor climate of industrial halls is now advantageously shaped radiant heating systems, which are more flexible and efficient than convection systems. The crucial component of indoor climate in these systems mean radiant temperature. The work focuses on theoretical and experimental research on the location and operation of radiant panels. For the theoretical part is used new computer software able to calculate the Institute TZB mean radiation temperature distribution in 2D space. The experimental part was carried out comprehensive measurements of indoor climate parameters specific industrial halls and subsequently compared. Work includes the design and comparison of three variants of heating in the indoor facility.
5

Využití odpadního tepla / Use of residual heat

Vlasák, Vojtěch January 2016 (has links)
This dissertation is divided into three parts. The first part deals with the use of waste heat in the theoretical plane, where methods and possibilities of using this heat are described. Part Two, which is computational, deals with the suggestion of heating industrial halls with an adjacent, mostly office, building in two variants, then it goes on to also deal with the concept of equal pressure forced ventilation, a proposal of air curtains and preparation of hot water, where the heat source is a boiler. In the last part an experiment took place which investigated the conversion efficiency of thermal to electric energy.

Page generated in 0.0405 seconds