• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Total ionizing dose monitoring for mixed field environments / Mesure de dose ionisante en champs de rayonnement mixte

Brucoli, Matteo 30 November 2018 (has links)
La mesure de la dose ionisante est aujourd'hui une tâche cruciale pour une large gamme d'applications fonctionnant dans des environnements de rayonnement sévères. Dans le contexte de l'amélioration de la luminosité du grand collisionneur de hadrons (LHC), la mesure des niveaux de rayonnement le long du complexe d'accélérateurs du CERN va devenir encore plus difficile. A cet effet, une connaissance plus détaillée du champ de rayonnement dans le tunnel de l'accélérateur et ses zones adjacentes devient nécessaire pour définir les exigences d'installation, de déplacement ou de blindage de l'électronique sensible au rayonnement. Dans l’objectif d’améliorer la mesure de la dose absorbée par les systèmes exposés au champ de rayonnement mixte généré par l’accélérateur, des investigations sur des nouveaux dosimètres ont été menées.Dans le cadre de cette recherche, deux dispositifs ont été étudiés et caractérisés pour être utilisés comme dosimètres et éventuellement pour compléter l'utilisation du dosimètre au silicium actuellement utilisé au CERN, à savoir le RADFET (RADiation-sensitive Field Effect Transistor) : un NMOS commercial et un ASIC (Application-specific Integrated Circuit) nommé FGDOS. Les dispositifs ont été sélectionnés selon deux approches opposées : d'une part, la réduction des coûts permettrait d'augmenter la densité des capteurs déployés. En conséquence directe, une carte des doses plus détaillée serait obtenue pour les grands systèmes distribués comme le LHC. D'autre part, la dosimétrie peut être améliorée en déployant des détecteurs plus sensibles, ce qui permettrait de mesurer la dose lorsque les niveaux sont trop faibles pour le RADFET. De plus, des capteurs à plus haute résolution permettraient de caractériser le champ de rayonnement dans un temps plus court, c'est-à-dire avec une luminosité intégrée plus faible.La première approche a été réalisée en recherchant des solutions alternatives basées sur des dispositifs COTS (Commercial Off-The-Shelf), qui réduiraient considérablement les coûts et garantiraient une disponibilité illimitée sur le marché. À cette fin, des recherches ont été menées sur un transistor NMOS discret commercial, qui s'est révélé très sensible au rayonnement.La nécessité d'améliorer la résolution de la mesure de dose a conduit à étudier le FGDOS, un dosimètre en silicium innovant à très haute sensibilité qui permet de détecter des doses extrêmement faibles.La calibration du transistor NMOS et du FGDOS a été effectuées en exposant les dosimètres à des rayons gamma. Leur réponse au rayonnement a été caractérisée en termes de linéarité, de variabilité d'un lot à l'autre et d'effet du débit de dose. L'influence de la température a été étudiée et une méthode pour compenser l'effet de la température a été développée et mise en œuvre.Le FGDOS étant un système sur puce (SoC) avec plusieurs caractéristiques qui font du dosimètre un système extrêmement flexible, la caractérisation de ses différents modes de fonctionnement (actif, passif et autonome) a été effectuée. Suite à la première caractérisation, des questions se sont posées concernant les mécanismes de dégradation de la sensibilité affectant le dosimètre. Pour étudier ce phénomène, des campagnes d’irradiations ont été effectuées avec une puce d'essai incorporant seulement le circuit sensible au rayonnement du FGDOS. L'analyse des expériences a permis de comprendre les processus responsables de la dégradation de la sensibilité, en séparant la contribution du transistor de lecture de celle du condensateur à grille flottante. Les résultats de cette étude nous ont amenés à envisager de nouvelles solutions de conception et des méthodes de compensation.L’aptitude du transistor NMOS et du FGDOS à mesurer la dose ionisante dans les champs de rayonnement mixtes produits par le complexe d’accélérateurs du CERN a été vérifiée à l’aide de test radiatifs accélérés effectués dans le centre de tests en champs mixte à haute énergie du CERN (CHARM). / The Total Ionizing Dose (TID) monitoring is nowadays a crucial task for a wide range of applications running in harsh radiation environments. In view of the High-Luminosity upgrade for the Large Hadron Collider, the monitoring of radiation levels along the CERN’s accelerator complex will become even more challenging. To this extent, a more detailed knowledge of the radiation field in the accelerator tunnel and its adjacent areas becomes necessary to design installation, relocation or shielding requirements of electronics sensitive to radiation. Aiming to improve the monitoring of the TID delivered by the mixed radiation field generated within the accelerator system, investigations on new suitable dosimeters have been carried out.With this research, two devices have been studied and characterized to be employed as dosimeter and possibly to complete the use of the silicon sensor currently employed at CERN for TID monitoring, i.e. the RADiation-sensitive Field Effect Transistor (RADFET): a commercial NMOS, and an ASIC (Application-Specific Integrated Circuit) named FGDOS. The devices have been selected following two opposite approaches: on the one hand, reducing the costs would allow the density of the deployed sensors to increase. As a direct consequence, a more detailed dose map would be obtained for large distributed systems like the LHC. On the other hand, the radiation monitoring can be further improved by deploying more sensitive detectors, which would allow to measure the dose where the levels are too low for the RADFET. Moreover, sensors with higher resolution would permit the characterization of the radiation field in a shorter time, which means within a lower integrated luminosity.The first approach has been accomplished by searching for alternative solutions based on COTS (Commercial Off-The-Shelf) devices, which would significantly reduce the costs and guarantee unlimited availability on the market. For this aim, investigations on a commercial discrete NMOS transistor, which was found to be very sensitive to the radiation, has been carried out.The need for improving the resolution of TID monitoring led to investigate the FGDOS, which is an innovative silicon dosimeter with a very high sensitivity that permits to detect extremely low doses.The calibration of the NMOS and the FGDOS have been performed by exposing the dosimeters to γ-ray. Their radiation response has been characterized in terms of linearity, batch-to-batch variability, and dose rate effect. The influence of the temperature has been studied and a method to compensate the temperature effect has been developed and implemented.Being the FGDOS is a System-On-Chip with several features that make the dosimeter an extremely flexible system, the characterization of its operational modes (Active, Passive and Autonomous) have been performed. Following the first characterization, some questions arose concerning the sensitivity degradation mechanisms affecting the dosimeter. To investigate this phenomenon, radiation experiments were performed with a test chip embedding only the radiation sensitive circuit of the FGDOS. The analysis of the experiments allowed the understating of the processes responsible for the sensitivity degradation, by separating the contribution of the reading transistor and the floating gate capacitor. The results of this investigation led us to considerer new design solution and compensation methods.The suitability of the NMOS and the FGDOS for TID measurement in the mixed radiation field produced by the CERN’s accelerator complex has been verified by performing accelerated radiation tests at the Cern High energy AcceleRator Mixed field facility (CHARM). The consistency of both sensors with the RADFET measurement has been demonstrated. The high sensitivity of the FGDOS leads to a significant improvement in terms of TID measurement in mixed radiation fields with respect to the RadFET, especially for low radiation intensities.
2

Etude et modélisation des effets de synergie issus de l’environnement radiatif spatial naturel et intentionnel sur les technologies bipolaires intégrées / Investigation and Modeling of Synergistic Effects in Integrated Bipolar Technologies Exposed to Natural Space Environment or Nuclear Detonation

Roig, Fabien 11 December 2014 (has links)
L'environnement spatial constitue une contrainte radiative susceptible d'altérer le bon fonctionnement des dispositifs électroniques embarqués à bord des engins spatiaux, engendrant ainsi des défaillances. Dans le cadre de ces travaux, deux types de dysfonctionnements sont répertoriés : les effets cumulatifs dus à une accumulation continue d'énergie déposée tout au long d'une mission et les effets transitoires dus au passage d'une particule unique dans une zone sensible d'un composant ou à un dépôt d'énergie en un temps très court dans le cadre spécifique d'une explosion nucléaire exoatmosphérique. Lors des procédures de qualification des composants électroniques, ces deux effets sont traités séparément et ce, malgré une probabilité non négligeable qu'ils se produisent simultanément en vol. Ces travaux sont dédiés à l'étude de la synergie entre effets cumulatifs et effets transitoires sur différentes technologies bipolaires intégrées. Les résultats obtenus permettent de fournir des éléments de réponse sur l'éventualité d'une évolution des normes de test pour prendre en compte la menace que pourrait représenter ce phénomène. Ces travaux s'attachent également à étendre une méthodologie de simulation, basée sur une analyse circuit approfondie, dans l'optique de reproduire les perturbations transitoires « pire-cas » sur un amplificateur opérationnel à trois étages de plusieurs fabricants, survenues lors des tests sous faisceau laser, ions lourds et flash X. L'influence des effets cumulatifs sur la sensibilité des perturbations transitoires est prise en compte en faisant varier les paramètres internes du modèle en fonction de la dégradation de certains paramètres électriques issue des essais radiatifs des équipementiers. / The space environment is a radiative concern that affects on board electronic systems, leading to failures. It is possible to distinguish two types of effects: the cumulative effects due to continuous deposition of energy throughout the space mission and the transient effects due to the single energetic particle crossing a sensitive area of the component or deposition of energy in a very short time in the specific context of an exo-atmospheric nuclear explosion. During qualification procedures for space mission, these effects are studied separately. However, the probability that they occur simultaneously in flight is significant. As a consequence, this work is about the study of the synergy between both cumulative and transient effects on various integrated bipolar technologies. The present results are used to provide some answers about potential changes of test methods. This work also evaluates the predictive capability of the previously developed model to reproduce accurately both the fast and the long lasting components of transients in circuitry and so to model transients' effects. This simulation methodology is extended to an operational amplifier from different manufacturers and for three different synergistic effects. The comparison between transients obtained experimentally during heavy ions, pulse laser and flash X experiments and the predicted transients validates the investigated methodology. The cumulative effects are taken into account by injecting the internal electrical parameters variations using irradiation exposure.

Page generated in 0.1451 seconds