• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2982
  • 1420
  • 504
  • 350
  • 199
  • 184
  • 184
  • 184
  • 184
  • 184
  • 180
  • 76
  • 73
  • 51
  • 40
  • Tagged with
  • 8638
  • 1170
  • 921
  • 814
  • 675
  • 640
  • 623
  • 560
  • 547
  • 502
  • 485
  • 472
  • 463
  • 456
  • 386
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

A study of the build-up region megavoltage radiation beams /

Abdel-Rahman, Wamied January 2004 (has links)
A phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) was used for studying the buildup region of megavoltage radiation beams. We investigated the polarity effect produced in the PEEC and found that radiation induced currents, called the Compton current, were the dominant cause of the polarity effect in the PEEC. In the dose build-up region of megavoltage photon beams, the collecting electrode is the primary Compton current source and the magnitude of the current depends on the measurement depth, field size, and photon beam quality. The connecting cable acts as a secondary Compton current source that produces a very small Compton current which depends on the field size and the photon beam quality, becoming the dominant source when the PEEC is placed at depths greater than the depth of maximum dose. A study of the dose build-up region of megavoltage photon beams showed that the percentage depth ionizations obtained from measurements are higher than the percentage depth doses obtained with Monte Carlo (MC) techniques. To validate the MC-calculated percentage depth doses, the design of the PEEC was incorporated in the simulations. While the MC-calculated and measured percentage depth ionizations in the dose build-up region agreed with one another for the 6 MV, a non-negligible difference is observed for the 18 MV x-ray beam. A number of experiments and theoretical studies of various possible effects which could be the source of this discrepancy is investigated. We show that the contribution of contaminating neutrons and protons to the doses in the 18 MV x-ray beam is negligible. Moreover, the MC calculations using the XCOM photon cross sections database and the NIST bremsstrahlung differential cross sections do not explain the discrepancy between the MC calculations and measurement in the dose build-up region for the 18 MV and this discrepancy is yet to be further investigated.
82

Differential uptake volume histograms: a novel avenue for integration of PET data into radiotherapy treatment planning

Mohammed, Huriyyah January 2011 (has links)
The integration of FDG-PET functional data into conventional anatomically-based GTV delineation may lead to optimization of dose to biological target volumes in radiotherapy. We are proposing a method for uncovering tumor sub-volumes using functional data. For a cohort of 27 histo-pathologically proven non-small cell lung carcinoma patients, background uptake values were sampled over slices containing tumor within contra-lateral healthy lung and then scaled by the ratio of tissue densities between healthy lung and tumor. Signal-to-background uptake values within volumes of interest encompassing the tumor were scored from which differential uptake volume histograms were constructed. These were subsequently decomposed into the minimum number of analytical functions that yielded acceptable net fits, as assessed by chi^2 values. For our patient population, at least four sub-volumes over the sampled volume of interest consistently evolved. It is possible that sub-volume thresholds may be extracted from custom-made differential uptake volume histograms for individual patients and then subsequently used for delineation of biological target volumes. At this point, however, we can only make a hypothesis that crossing point of the second and third fitted peak of the uptake volume histogram may help in singling out necrotic tissue, while the crossing point between third and fourth fitting function may help in identification of the glycolytic sub-volume within the tumor. Extensive pre-clinical studies are needed to establish correlation between these sub-volumes and their true underlying physiology. / En radiothérapie, l'intégration en données fonctionnelles de la PET au FDG au processus conventionnel de délimitation anatomique du GTV peut conduire à l'optimisation de la dose aux volumes biologiques cibles. Nous proposons une méthode pour découvrir des sous volumes tumoreaux, en utilisant des données fonctionnelles. Pour une cohorte de vingt-sept patients histo-pathologique ateints de carcinomes pulmonaires (à cellules non petites) prouvées histologiquement, les valeurs absorption de fond ont été prélevés sur les tranches contenant la tumeur dans le poumon sain controlatéral, puis amplifiée par le rapport des densités entre des tissus pulmonaires sains et tumoraux. Les valeurs d'absorption du signal de fond dans les volumes d'intérêt englobant la tumeur ont été choisies et utilisés pour calculer des histogrammes de volumes différentiels d'absorption. Ils furent ensuite décomposés en un nombre minimum de fonctions requises pour produire un ajustement analytique acceptable, tel qu'évalué par les valeurs du chi ^ 2. Pour notre population de patients, au moins quatre sous-volumes sur le volume de l'échantillon d'intérêt ont constamment évolué. Il est possible que les seuils de sous volume peuvent être extraits à partir d'histogrammes différentiels d'absorption spécifiques à chaque patient et par la suite utilisés pour la délimitation des volumes biologiques cibles. À ce stade, cependant, nous ne pouvons faire l'hypothèse que le point de passage du deuxième pic au troisième de l'histogramme de volume absorption peut aider à l'identification les tissus nécrosés, alors que le point de passage entre la fonction de montage de niveau trois à quatre peut aider à l'identification du sous volume glycolytique de la tumeur. Des études préliminaires cliniques approfondies seront nécessaires pour établir une corrélation entre ces sous-volumes et leur vraie physiologie sous-jacente.
83

Validation of a commercial Monte Carlo algorithm for stereotactic radiosurgery and stereotactic body radiation therapy

Milroy, Desmond January 2012 (has links)
This thesis aimed to validate the Monte Carlo (MC) algorithm in BrainLab's iPlan treatment planning system, used in conjunction with stereotactic radiosurgery (SRS) mode of the Varian Novalis TX linear accelerator for clinical use. Specifically, the iPlan algorithm was "benchmarked" by comparing results obtained with a BEAMnrc model developed for the Novalis TX's SRS mode. The BEAMnrc model was obtained by modifying an existing model for a Varian linac to include the different SRS flattening filter and the high definition 120 leaf multi-leaf collimator (HD120 MLC) of the Novalis TX. Characterization of the source model used a recently published procedure to fit beam energy, source size and angular spread, and an existing BEAMnrc Monte Carlo component module (DYNVMLC) was reprogrammed to model the HD120 MLC of the Novalis TX linac. For the latter, the interleaf air gap and leaf density were adjusted such that simulations matched interleaf leakage profiles measured with film. Validation of the iPlan MC algorithm was accomplished through comparisons between both MC codes and film measurements for MLC defined fields, depth dose curves of square fields incident on heterogeneous slab phantoms, and more clinically realistic plans incident on a Lucy® stereotactic QA phantom and a Rando® head phantom. The source characterization procedure and the modeling of the HD120 MLC were successful, with subsequent simulations performing well compared to measurements of output factors, profiles in water and dose planes of MLC defined fields. Some discrepancies were observed between either MC code and film measurements, but calculations with iPlan MC and EGSnrc MC codes agreed well with each other in all cases. These results suggest that the iPlan Monte Carlo dose calculation algorithm is capable of accurately predicting radiation dose for complex fields in heterogeneous media. / Ce mémoire visait à valider l'algorithme Monte Carlo (MC) dans le cadre du système de planification de traitement iPlan de BrainLab où il est conjointement utilisé avec le mode radiochirurgical stéréostatique (SRS) de l'accélérateur linéaire Novalis TX de Varian. Plus particulièrement, l'algorithme iplan a été validé en comparant les résultats obtenus avec un modèle BEAMnrc du mode SRS de Novalis TX. Le modèle BEAMnrc a été créé en modifiant un modèle existant d'accélérateur Varian afin d'y inclure le filtre compensateur SRS et le collimateur multilames de haute définition de Novalis TX (HD120MLC). La caractérisation de la source a utilisé une procédure récente pour ajuster l'énergie, la taille et l'ouverture angulaire de la source. Par ailleurs, un module multilames de BEAMnrc existant (DYNVMLC) a été reprogrammé pour simuler le collimateur multilames de haute définition (HD120MLC). Pour ce dernier, l'écart entre les lames et la densité des lames ont été ajustés de sorte que les simulations correspondent aux profils de fuites interlames mesurées par films. La validation de l'algorithme iPlan a été réalisée par comparaisons entre les deux codes MC et des mesures de films pour des champs définis par le collimateur multilames, pour des courbes de la dose en profondeur de champs carrés administrés sur des fantômes hétérogènes et de plans plus réalistes du point de vue clinique administrés sur un fantôme stéréostatique Lucy® et un fantôme de tête Rando®. La procédure de caractérisation de la source et la modélisation du collimateur multilames (HD120MLC) ont été réussies ainsi que les simulations ultérieures correspondaient bien aux mesures des facteurs d'ouverture, des profiles dans l'eau et des distributions de dose des champs définis par le collimateur multilames. Des différences ont été observées s entre les codes MC et les mesures de films, mais les calculs avec les codes IPlan MC et EGSnc correspondaient bien dans tous les cas. Ces résultats suggèrent que l'algorithme MC de Iplan peut prédire précisément les doses de rayonnement pour des champs complexes dans des medias hétérogènes.
84

4D Monte Carlo investigation of organ motion in radiotherapy for lung cancer

Heath, Emily Claire January 2008 (has links)
A limitation of current dose calculation algorithms employed in radiotherapy treatment planning is the assumption that the patient's anatomy is static throughout the imaging, planning and delivery. 4D dose calculation methods employ non-linear image registration to determine the cumulative dose received in a deforming anatomy. In this work, we developed a 4D Monte Carlo dose calculation code, designated defDOSXYZ, which determines the dose received in a deforming voxel grid. Voxel deformations were determined from deformation vectors resulting from non-linear image registration between images of the reference and target states. The ANIMAL non-linear image registration algorithm was implemented for registration of thoracic 4D CT images. Modifications were performed to ANIMAL to minimize deformation vector discontinuities. A method for correcting artifacts in 4D CT images was developed which uses non-linear image registration to interpolate voxel intensities from temporally adjacent artifact-free images. Dose calculations in deforming phantoms and 4D CT patient data using defDOSXYZ were compared to conventional center-of-mass (COM) and trilinear (TL) dose remapping methods. defDOSXYZ calculations were determined to be accurate to within 1% by comparison with DOSXYZ calculations and internal consistency checks. Conventional dose remapping methods were found to underestimate the dose by 29% and 8%, on average, when remapping dose from Exhale to Inhale within simple deforming phantoms with voxel sizes of 1 cm and 0.5 cm, respectively. These discrepancies were reduced to 0.2% for voxel sizes of 0.25 cm and smaller, however dose errors of 20-30% still existed in regions of steep dose gradients. The accuracy of non-linear image registration between inhale and exhale images for 5 lung patients was found to be within 2 mm which was deemed acceptable for clinical dose calculations. Temporal interpolation using ANIMAL was demonstrated to improve image quality in 4D data se / L'hypothèse que l'anatomie du patient est statique tout au long de l'imagerie, de la planification et du traitement est une limite des algorithmes actuels de calcul de dose en planification de traitement radiothérapeutique. Des méthodes de calcul de dose en 4D utilisent le recalage d'image non linéaire pour déterminer la dose cumulée reçue par une anatomie déformable. Dans cette thèse, nous avons développé un code Monte-Carlo de calcul de dose en 4D, appelé defDOSXYZ, qui détermine la dose reçue dans une grille de voxels déformables. La déformation des voxels a été établie à partir de la variation des vecteurs résultant du recalage d'image non linéaire entre les états de référence et les états cibles. L'algorithme de recalage d'image non linéaire ANIMAL a été appliqué au recalage d'images thoraciques obtenues en tomodensitométrie 4D. Des modifications ont été apportées à ANIMAL afin de minimiser les discontinuités dans la variation des vecteurs. Une méthode a été développée pour corriger les images de tomodensitométrie 4D ; cette méthode utilise le recalage d'image non linéaire pour interpoler l'intensité dans les voxels à partir d'images sans artéfacts consécutives dans le temps. Les calculs de dose avec defDOSXYZ dans les fantômes déformables et sur des images tomodensitométriques 4D de patients ont été comparés aux méthodes conventionnelles de redistribution de dose, l'une dite « du centre de mass » (COM), l'autre trilinéaire (TL). Les calculs avec defDOSXYZ ont été mesurés et sont exacts à mieux que 1 % en comparaison des calculs de DOSXYZ et de tests d'autocohérence. Nous avons trouvé que les méthodes conventionelles de redistribution de dose sous-estiment la dose, en moyen, par 29% et 8% dans de simples fantômes déformables avec des tailles de voxel de 1.0 cm et 0.5 cm, respectivement. Les divergences étaient réduites jusqu'à 0.2% pour des tailles de voxel de 2.5 mm et plus petits, mal
85

Scatter factors and peak scatter factors for cobalt-60, 6 MV, 10, and 18 MV photon beams

Abdel-Rahman, Wamied. January 1999 (has links)
The aim of external beam radiotherapy is to deliver a prescribed dose to a target volume accurately and uniformly while sparing the surrounding healthy tissue. In radiation dosimetry calculations, many functions are employed to achieve this goal, and the Peak Scatter Factor (PSF) is one of the fundamental functions used in dosimetry. / A brief background of some of the basic physics employed in external beam radiotherapy is given, illustrating some of the applications of the PSF in dosimetry. Also, the evolution of the definition of the PSF is discussed by presenting the PSF definitions quoted in several dosimetric references. In addition, concerns debated among physicists regarding the consistency of tabulated values of the PSF in dosimetric references with the definition of the PSF are presented. / A practical method for measuring the PSF for megavoltage photon beams is developed. The method is applied to Co-60, 6 MV, 10 MV, and 18 MV photon beams using water, polytyrene, and solid water phantoms. The measured PSFs are compared to tabulated PSF and Normalized Peak Scatter Factors (NPSF) published in the British Journal of Radiology (BJR), supplement 25.
86

Construction and dosimetric evaluation of compensators for intensity modulated beams

Dimitriadis, Doris M. January 2000 (has links)
We investigated the feasibility of constructing compensators for intensity modulated beams. The average uncertainty in the constructed compensator thickness was +/-0.3 mm. It was found that the beam hardening effect was significant, and can lead to an error of 6.2% in the transmission, for 6 cm of lead alloy in the beam. The maximum scatter contribution to the measured fluence was 19.8% for a 20 x 20 cm2 field size, and 6 cm of lead alloy in the beam. The compensators were constructed using a simple attenuation model. For a simple wedge-step compensator there was a maximum deviation of 6% between the measured and our predicted fluence profile. For simple compensators this deviation can be attributed to scatter according to the scatter analysis introduced. The maximum deviation between the measured and predicted fluence, for fluence files derived from a commercial inverse treatment planning system was slightly higher at 7%. This is because other factors such as penumbra and scatter from neighboring modulations must be considered for each compensator individually.
87

Comparison of measured and Monte Carlo-calculated peak scatter factors for 10X10 cm2 field size in 6 MV and 18 MV photon beams

Chung, Eunah January 2009 (has links)
The purpose of this thesis is to measure the peak scatter factors (PSFs) for a 10X10 cm2 field size in 6 MV and 18 MV photon beams using a Solid WaterTM phantom and build-up caps made of LuciteTM, aluminum, brass, and copper. The PSF for the 10X10 cm2 field size was first determined by extrapolating the measured normalized peak scatter factor (NPSF) to 0X0 cm2 field size. The extrapolated NPSF was the reciprocal of the PSF(10, hv). The measured PSF(10, hv) was then compared to the PSF determined with Monte Carlo methods. We used Monte Carlo methods to investigate the dependence of the measured signal on the build-up cap material. This was carried out by calculating the primary and scatter dose contributions to the measured signal in the air cavity of the ionization chamber. Based on Monte Carlo studies, a factor was calculated to obtain the PSF from the measurements. / L'objectif de cette thèse est d'obtenir le peak scatter factor (PSF) de faisceaux de photons de 6 et 18 MV. Les champs utilisés étaient de 10x10 cm^2 et les mesures furent effectuées à l'aide d'un fantôme de Solid Water tm couplé à des capuchons d'accumulation fait de Lucite tm, d'aluminium, de laiton et de cuivre. Le PSF du champ de 10x10cm2 a été déterminé en extrapolant le peak scatter factor normalisé (NPSF) d'un champ de 0x0cm2. Le NPSF extrapolé correspond à la réciproque du PSF(10,hv). Le PSF(10, hv) fut ensuite comparé à celui déterminé à l'aide de méthodes Monte Carlo. Les méthodes Monte Carlo furent utilisées pour étudier la dépendance entre le signal mesuré et le matériel du capuchon d'accumulation. Ceci fut accompli en décomposant le signal provenant de la cavité de la chambre d'ionisation en dose primaire et diffusée. Un facteur liant le PSF et les mesures fut calculé à l'aide d'études Monte Carlo.
88

Evaluation of Eclipse© Monte Carlo dose calculation for clinical electron beams using heterogeneous phantoms

Lagmago Kamta, Gérard January 2009 (has links)
Accurate dose calculations of photon and electron transport in tissue materials are an important step in the appropriate delivery of cancer radiotherapy. Various commercial treatment planning systems used in radiotherapy provide algorithms for fast dose calculations. It is the responsibility of medical physicists to commission and evaluates these algorithms. In this work, we have evaluated the electron Monte Carlo (MC) algorithm in Eclipse using solid water phantoms with various tissue heterogeneities (water, lung, cortical bone, air) embedded, and using CT data from a real patient. For heterogeneous phantoms, the evaluation is done by comparing dose profiles and percent depth doses (PDDs) calculated on Eclipse with measurements, and with MC simulations using DOSXYZnrc. Measurements of dose profiles and PDDs are taken using EBT Gafchromic films, and we have developed a piece of software in Matlab for extracting dose from EBT Gafchromic films. For the real patient case, we use DOSXYZnrc results as a benchmark against which Eclipse is evaluated. Although Eclipse has been evaluated previously, the originality of the present work lays on the use of digitally reproduced phantom copies on Eclipse and DOSXYZnrc instead of CT scanned phantoms, the use of absolute dose for all comparisons, and the consideration of a real clinical patient. In addition, we have developed a tool for extracting absolute dose profiles and PDDs from EBT Gafchromic films. Our results indicate that, MC results agree in general better with measurements (within 5% or less) than Eclipse MC, whose discrepancies with measurements can be as high as 15% for physical phantoms used and as high as 10% in the case of real patient CT data. Largest discrepancies between measurement (or MC) and Eclipse MC occur at depths near and below tissue heterogeneities with relatively sharp density gradients. The slightly better performance of Eclipse for the real patient case is related to the smoother changes in hetero / Les calculs précis de dose déposée dans les tissus par les photons et les électrons constituent une étape préliminaire cruciale dans tout approche de thérapie de cancer par la radiation. Plusieurs entreprises commerciales offrent de nos jours des programmes de planification des thérapies qui incluent des algorithmes de calcul de dose dans les tissus. Il est de la responsabilité du physicien médical de vérifier que ces algorithmes effectuent les calculs de dose avec une précision acceptables selon les standards actuels de radiothérapie. Dans ce mémoire, nous avons effectué une évaluation de l’algorithme Monte Carlo (MC) de calcul de dose (pour les faisceaux d’électrons) du programme de planification en radiothérapie connu sous le nom d’Eclipse. Dans cette évaluation, nous avons utilisé des fantômes solides contenant des tissue de densités diverses (eau, poumon, os, air) ainsi que des images scanner d’un patient réel (humain). Pour les fantômes solides notre évaluation a été faite en comparant les calculs d’Eclipse à des mesures expérimentales utilisant des films EBT Gafchromic d’une part, et d’autre part à des calculs MC plus rigoureux utilisant DOSXYZnrc. Pour le cas d’un patient, nous évaluons Eclipse en le comparant aux résultats MC obtenu via DOSXYZnrc, parce que nous ne pouvons placer un dosimètre à l’intérieur du patient. Nos résultats indiquent que les résultats MC sont plus proches des mesures expérimentales (écarts de l’ordre de 5% ou moins) que ceux d’Eclipse, lesquels ont un écart pouvant atteindre a peu près 15% par rapport aux mesures dans le cas des fantômes et 10% par rapport aux résultats MC pour le cas du patient réel. Les pires imprécisions d’Eclipse MC se retrouvent dans les tissus au voisinage des régions où il y a de fortes hetérogénéités et où les gradients de densités sont importants. En effet, les résultats obtenus par d’Eclipse MC pour le cas d’un patient ré
89

Charge transport and storage in the radiation-charged elecret ionization

MacDonald, Brennan A. January 1994 (has links)
Numerical calculations of time-dependent charge distributions are presented and compared with distributions measured on radiation-charged electrets made of thin polymer films, which are charged and discharged in a Radiation-Charged Electret Ionization Chamber (REIC) through the application of ionizing radiation. The chamber resembles a parallel plate ionization chamber, and has a thin film of polymer covering the collector and guard-ring electrodes. Calculations are performed by solving Laplace's Equation for the true geometry of the charging/discharging set-up, then applying estimates of ion-density distributions generated from known scattering distributions and/or simpler approximations. Measurements of radiation induced conductivity (RIC) are presented and fitted to an empirically derived analytical model, and the effects of RIC on the operation of a radiation dosimeter based on the electret are investigated and discussed. Short-term and long-term charge decay from the electret is measured and fitted to a previously developed model. The effects of post-charging heat treatment of the radiation-charged electret are presented and discussed. Lastly, the dosimetric characteristics of the REIC are considered in light of those physical aspects investigated here.
90

Monte Carlo based electron treatment planning and cutout output factor calculations

Mitrou, Ellis January 2012 (has links)
Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMIC EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient. / La radiotherapie d'électrons offre plusieurs avantages en comparaison avec les photons. La dose de surface élevée, en combinaison avec une dose descendante plus rapide au-delà du volume prévu présente un taux plus élevé de la probabilité de contrôle tumoral et diminue les complications dans les tissus normaux en évitant les tumeurs superficiel. Les traitements d'électrons sont habituellement utilisés cliniquement sans calculations de doses prévu, due à leurs complexités du transport d'électron qui sont impliqués et plusieurs erreurs de precision en planification. Cette recherche utilise les methodes de Monte Carlo (MC) pour démontrer cliniquement les faisceaux d'électrons pour précisément calculer la dose d'électron distribuée au patients mais aussi pour pouvoir calculer les facteurs de dendements de cutout, et ceci réduit le besoin d'une mesure clinique. Ce projet a été élaboré dans un environnement de calculation par MC: McGill Monte Carlo Treatment Planning (MMCTP) System. Mesure de pourcentage de dose en profondeur, profiles et les facteurs de rendements de cutout ainsi que de doses mesurés avec des films GAFCHROMIC EBT2 dans les phantoms hétérogène ont été obtenu pour déléguer la modèle de faisceau d'électron. L'utilisation de MC pour l'électrode TP sera apporter des traitements plus précis et en consequence produire plus de connaissance de la dose d'electrons plus approprié pour le patient. Ces attributions pourront sauver jusqu'à une heure par patient en terme de temps passé en clinique.

Page generated in 0.1139 seconds