Spelling suggestions: "subject:"radio bfrequency remeasurements"" "subject:"radio bfrequency aremeasurements""
1 |
Optimal Indoor Positioning, Trajectory Reconstruction and Localisation with Uncertainty Control using Radio-Frequency MeasurementsShamsfakhr, Farhad 29 June 2023 (has links)
This thesis addresses the problem of target positioning and localization using Radio Frequency (RF) based measurements and using a variety of modulation including Time of Arrival (ToA), Phase of arrival (PoA) and Received Strength Indicator of RF signals (RSSI). Starting from finding the planar coordinates of a device from a collection of ranging measurements using weighted least square (WLS) methods, we explore the dependency of the solution uncertainty from the geometric configuration of anchors and then develop solutions that compensate for the effects of
geometry and reduce the positioning uncertainty to a value close to the Cramer–Rao Lower Bound (CRLB), a measure which is then used in the proceeding chapters for developing optimal anchor configurations for positioning problem with guaranteed estimation uncertainties. The findings in the positioning part are also used to address the limitations of initializing Ultra-Wideband (UWB) anchors through a random trajectory. This is done by studying the dual of the positioning problem addressed in the first part, that is incorporating CRLB as a measure of optimality to design a trajectory that minimizes the uncertainty of anchor initialization. We finally close the positioning part of the thesis by studying the range and bearing measurements provided by radar sensors for people tracking and positioning in indoor environments. Taking into account the target dynamics, in the second part of the thesis we present observabilty analysis and localization for non-holonomic robots, using a combination of onboard sensors and range-only anchors. By
using a discrete-time formulation of the system’s kinematics, we identify the geometric conditions that make the system globally observable and thereby derive the observability-based filter (ObF) to outperform the limitations of the classic Bayesian filters. We then use the implications of this analysis to design an active control and optimal path-planning strategy with guaranteed maximum observability. We close this part of the thesis by investigating localization in presence of intermittent measurements and discuss how the observability of a trajectory can be quantified by the condition number of the system matrix, a subject related to the maneuvers executed by the robot and to the sampling time used to collect the measurements. Eventually, in the last part of this thesis, we address the localization in presence of offset and ambiguities in measurements. First, we show that, while using range-only measurements corrupted with offset, the trajectories can be observed and the offset can be estimated in a finite number of steps. Next, we present an
approach to resolve the ambiguity of rang-only measurements obtained from RSSI values at the Ultra-High Frequency (UHF) band by proposing an optimization algorithm that merges RFID and odometry data to reconstruct the entire robot trajectory. Finally, we present a solution to resolve the ambiguity of the RFID signal phase and reconstruct the robot trajectory through sensor fusion and using UHF-RFID passive tags.
|
2 |
Residential Microwave Oven Interference on Bluetooth Data PerformanceD'Souza, Mark Francis 19 May 2003 (has links)
This thesis investigates the interference potential of microwave ovens to Bluetooth data communication. Interference experiments are conducted in the CWT's Bluetooth lab, using CSR™ (Cambridge Silicone Radio) Bluetooth radios and a Tektronics™ Protocol Analyzer to record packet transmissions between the master and slave units.
A novel, "quasi-real time" spectral measurement concept is developed to take radio frequency measurements. A LabView program enables a spectrum analyzer to download oven spectral data onto a computer via the instrument's serial port. From this data, three-dimensional plots of microwave radiated power levels versus ISM band frequencies over time periods are produced for different microwave ovens. These plots are compared with the results of interference experiments to explain Bluetooth packet errors.
In addition to causing packet errors, emitted oven power levels at certain frequencies are sometimes strong enough to cause data packets to be lost (dropped) as they are transmitted over the air. This is a major problem since the Protocol Analyzer does not "see" these packets and cannot record the transmissions during an experiment. These lost packets can be accounted for if the frequency hopping scheme of the communicating Bluetooth devices is know prior to data transmission. Bluetooth's Frequency Hop Scheme is coded in Matlab for the purpose of predicting a data transmission's hopping sequence. The lost packets on each Bluetooth channel are counted by subtracting the Analyzer's recorded number of data transmissions per channel from the total number of transmissions per channel predicted by Matlab.
A method is devised to calibrate the Bluetooth receiver and the spectrum analyzer is used to measure the received power level of Bluetooth signals on a particular frequency (channel). The number of packet errors on a channel is determined from the channel's C/I (carrier-to-interference ratio). If a channel's C/I level falls below the calculated C/I threshold at any instant of time due to oven operation, the packet transmitted at that instant is likely in error. A Matlab program estimates the number of packet errors per channel by counting the number of times the C/I of a channel falls below it's threshold value. The predicted number of packet errors is compared with the measured packet errors from experiments to yield extremely good results.
Various oven-interference experiments are conducted in a small building, a large office environment and outdoors. For each experiment, the number of occurrences of transmitted data is plotted for each Bluetooth channel. Composite Excel bar graphs, created from this data, are compared with the oven spectral plots to describe an oven's effect on Bluetooth transmission.
It is determined that different ovens cause packet errors on specifically different channels, in addition to channels 52-54 around the oven's 2450 MHz center operating frequency. The interference experiments suggest that placing an oven a radius of 10 m away from Class I (devices in a piconet will not affect data transmission). / Master of Science
|
Page generated in 0.0808 seconds