• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 13
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 194
  • 194
  • 180
  • 75
  • 54
  • 34
  • 34
  • 33
  • 33
  • 30
  • 29
  • 27
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Spectrum coordination protocols and algorithms for cognitive radio networks

Jing, Xiangpeng. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Electrical and Computer Engineering." Includes bibliographical references (p. 101-105).
32

Hardware and software for WINC2R cognitive radio platform

Jain, Shalini. January 2008 (has links)
Thesis (M.S.)--Rutgers University, 2008. / "Graduate Program in Electrical and Computer Engineering." Includes bibliographical references (p. 59-60).
33

Analytical and experimental performance comparison of energy detectors for cognitive radios /

Ciftci, Selami, January 2008 (has links)
Thesis (M.S.)--University of Texas at Dallas, 2008. / Includes vita. Includes bibliographical references (leaves 62-63)
34

Toward optimal cooperative sensing and cooperative relay in cognitive radio networks /

Lang, Ke. January 2010 (has links)
Includes bibliographical references (p. 56-60).
35

Spectrum sensing based on sequential testing : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Engineering in Electrical and Electronic Engineering at the University of Canterbury, Christchurch, New Zealand /

Ma, Xiao, January 1900 (has links)
Thesis (M.E.)--University of Canterbury, 2009. / Typescript (photocopy). "December 2009." Includes bibliographical references (p. [95)-102). Also available via the World Wide Web.
36

Secure MAC protocols for cognitive radio networks

Alhakami, Wajdi January 2016 (has links)
With the rapid increase in wireless devices, an effective improvement in the demand of efficient spectrum utilisation for gaining better connectivity is needed. Cognitive Radio (CR) is an emerging technology that exploits the inefficient utilisation of the unused spectrum dynamically. Since spectrum sharing is responsible for coordinating channels’ access for Cognitive Users (CUs), the Common Control Channel (CCC) is one of the existing methods used to exchange the control information between CUs. However, the unique characteristics and parameters of Cognitive Radio Networks (CRNs) present several possible threats targeting spectrum sensing, spectrum management, spectrum sharing, and spectrum mobility leading to the deterioration of the network performance. Thus, protection and detection security mechanisms are essential to maintaining the CRNs. This thesis presents a novel decentralised CR MAC protocol that successfully utilises the unused portion of the licensed band. The protocol achieves improved performance; communication time and throughput when compared to two benchmark protocols. Less communication time and higher throughput are accomplished by the protocol due to performing fast switching to the selected available data channel for initiating data transmission. The proposed protocol is then extended to two different versions based on two authentication approaches applied to it; one using Digital Signature and another is based on Shared-Key. The two proposed secure protocols address the security requirements in CRNs leading to subsequent secure communication among CUs. The protocols function effectively in providing defence against several attacks related to the MAC layer such as; Spectrum Sensing Data Manipulation/Falsification, Data Tempering and Modification, Jamming attacks, Eavesdropping, Forgery and Fake control information attacks, MAC address spoofing, and unauthorised access attacks. The associated security algorithms ensure the successful secure communication between CUs in a cooperative approach. Moreover, the security protocols are investigated and analysed in terms of security flows by launching unauthorised access and modification attacks on the transmitted information. The testing results demonstrated that two protocols perform successful detection of threats and ensure secure communication in CRNs.
37

Connectivity-Aware Routing Algorithms for Cognitive Radio Networks

Gad, Mahmoud M. January 2015 (has links)
The increased demand on wireless applications, coupled with the current inefficiency in spectrum usage, mandate a new communication paradigm shift from fixed spectrum assignment to dynamic spectrum sharing which can be achieved using the cognitive radio technology. Cognitive radio allows unlicensed secondary nodes to form communication links over licensed spectrum bands on an opportunistic basis which increases the spectrum management efficiency. Cognitive radio networks (CRN), however, impose unique challenges due to the fluctuation in the available spectrum as well as the diverse quality of service requirements. One of the main challenges is the establishment and maintenance of routes in multi-hop CRNs. In this thesis, we critically investigate the problem of routing in multi-hop CRNs. The main objective of this research is to maximize network connectivity while limiting routing delay. We developed a general connectivity metric for single-band and multi-band CRNs based on the properties of the Laplacian matrix eigenvalues spectrum. We show through analytical and simulation results that the developed metric is more robust and has lower computational complexity than the previously proposed metrics. Furthermore, we propose a new position-based routing algorithm for large scale CRNs which significantly reduces the routing computational complexity with negligible performance degradation compared to the traditional full node search algorithm. In addition, the connectivity metric developed in this thesis is used to develop a connectivity-aware distributed routing protocol for CRNs. Finally, we use a commodity cognitive radio testbed to demonstrate the concept of CR Wi-Fi networks.
38

A Filtered Multitone (FMT) Implementation with Custom Instructions on an Altera FPGA

Xin, Xin 10 June 2013 (has links)
There is a belief that radio frequencies  are running out. However, according to a report from the Federal Communications Commission (FCC) in 2002, a different story was told : At any given time and location, much of the prized spectrum lies idle. At the same time, FCC revealed the fact that, in many bands, spectrum access is a more significant problem than physical scarcity of spectrum, in large part due to legacy command-and-control regulation that limits the ability of potential spectrum users to obtain such access. Hence, as opposed to static spectrum access, dynamic spectrum access (DSA) was proposed to solve the predicament. One such DSA model propose the existence of Primary users (licensed users and Secondary users (unlicensed users). Multicarrier communication technology is adopted to enable the coexistence of PU and SU. Orthogonal Frequency Division Multiplexing (OFDM) technology has been popular for multicarrier communications. A disadvantage for OFDM in the Cognitive Radio environment is its large side lobes in the frequency domain, which is a result of single-symbol pulse duration. Filter Bank Multicarrier (FBMC) uses filters that have small side lobes to synthesize/analyze the sub-carriers so as to greatly alleviate the previous mentioned disadvantage. FMT is one FBMC technique.  Although many hardware implementations have been explored during last few decades on OFDM, few FMT hardware implementation results, especially Hardware/Software Co-design, have been presented. This paper presents a HW/SW Co-design implementation result of FMT transceiver on the Altera DE4 board. / Master of Science
39

Spectrum Map and its Application in Cognitive Radio Networks

Debroy, Saptarshi 01 January 2014 (has links)
Recent measurements on radio spectrum usage have revealed the abundance of underutilized bands of spectrum that belong to licensed users. This necessitated the paradigm shift from static to dynamic spectrum access. Cognitive radio based secondary networks that utilize such unused spectrum holes in the licensed band, have been proposed as a possible solution to the spectrum crisis. The idea is to detect times when a particular licensed band is unused and use it for transmission without causing interference to the licensed user. We argue that prior knowledge about occupancy of such bands and the corresponding achievable performance metrics can potentially help secondary networks to devise effective strategies to improve utilization. In this work, we use Shepard's method of interpolation to create a spectrum map that provides a spatial distribution of spectrum usage over a region of interest. It is achieved by intelligently fusing the spectrum usage reports shared by the secondary nodes at various locations. The obtained spectrum map is a continuous and differentiable 2-dimension distribution function in space. With the spectrum usage distribution known, we show how different radio spectrum and network performance metrics like channel capacity, secondary network throughput, spectral efficiency, and bit error rate can be estimated. We show the applicability of the spectrum map in solving the intra-cell channel allocation problem in centralized cognitive radio networks, such as IEEE 802.22. We propose a channel allocation scheme where the base station allocates interference free channels to the consumer premise equipments (CPE) using the spectrum map that it creates by fusing the spectrum usage information shared by some CPEs. The most suitable CPEs for information sharing are chosen on a dynamic basis using an iterative clustering algorithm. Next, we present a contention based media access control (MAC) protocol for distributed cognitive radio network. The unlicensed secondary users contend among themselves over a common control channel. Winners of the contention get to access the available channels ensuring high utilization and minimum collision with primary incumbent. Last, we propose a multi-channel, multi-hop routing protocol with secondary transmission power control. The spectrum map, created and maintained by a set of sensors, acts as the basis of finding the best route for every source destination pair. The proposed routing protocol ensures primary receiver protection and maximizes achievable link capacity. Through simulation experiments we show the correctness of the prediction model and how it can be used by secondary networks for strategic positioning of secondary transmitter-receiver pairs and selecting the best candidate channels. The simulation model mimics realistic distribution of TV stations for urban and non-urban areas. Results validate the nature and accuracy of estimation, prediction of performance metrics, and efficiency of the allocation process in an IEEE 802.22 network. Results for the proposed MAC protocol show high channel utilization with primary quality of service degradation within a tolerable limit. Performance evaluation of the proposed routing scheme reveals that it ensures primary receiver protection through secondary power control and maximizes route capacity.
40

Characterization and Evaluation of Non-Line-of-Sight Paths for Fixed Broadband Wireless Communications

Gallagher, Timothy M. 02 July 2004 (has links)
Channel impulse responses collected on the Virginia Tech campus show combinations of specular multipath and diffuse scattering at LMDS frequencies. An algorithm is presented that estimates link performance based on the channel impulse response. Presented and analyzed are representative impulse responses (one is primarily specular in nature and one shows significant diffuse scattering) to show that the proposed algorithm is appropriate for analyzing channels exhibiting either of these characteristics. Monte Carlo simulations logged the sequence number of each bit error to gain an understanding of the distribution of errors over time. The results show that for these static channels the errors occur randomly rather than in bursts, leading to the conclusion that average bit-error rate statistics are appropriate for channel characterization. Zero-Forcing (Z-F) and Minimum Mean Square Error (MMSE) equalizers employed on these channels had a significant impact on the link quality. In many cases, the performance of the MMSE equalizer performed only slightly better than the Z-F equalizer. However, when deep nulls were present in the channel response, the MMSE equalizer performed significantly better. Algorithms for determining the number of taps necessary to approach an optimum equalization are presented for both types of equalizers and a '98%' rule of thumb is presented. The algorithm's role in adaptive and cognitive radio systems is discussed and two applications are presented to illustrate its utility. / Ph. D.

Page generated in 0.0303 seconds