• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 10
  • 8
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 145
  • 145
  • 28
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Avaliação de projetos logísticos de RFID aplicados na indústria aeronáutica brasileira /

Castro, Jefferson Inácio de. January 2014 (has links)
Orientador: Jorge Muniz Junior / Coorientador: José Arnaldo Barra Montevechi / Banca: Valério Pamplona Salomon / Banca: Luis Alberto Ducan Rangel / Resumo: A tecnologia de Radio Frequency Identification (RFID) tornou-se um tema importante desde 2006, quando vários autores começaram a avaliá-la. A aplicação de RFID para processos industriais tem uma abordagem estratégica, objetivando a melhoria da satisfação dos clientes e criar novas oportunidades de negócios, bem como uma abordagem operacional com foco na eficiência operacional e na flexibilidade dos processos. A tecnologia é aplicada na logística e nos demais processos da cadeia de suprimentos com o objetivo do rastreamento dos materiais, aumento de visibilidade, aumento da eficiência operacional, redução dos desvios do processo e aumento da acessibilidade do inventário. Neste cenário, a presente dissertação tem como objetivo a avaliação de projetos logísticos aplicados à indústria aeronáutica brasileira com o uso do AHP - Analytic Hierarchy Process com ratings - passando pela identificação e avaliação das características que motivam e restringem a utilização da tecnologia através de uma revisão da literatura e pesquisa de campo / Abstract: Research on Radio Frequency Identification technology (RFID) has become an important issue since 2006 and several authors have begun to assess this technology. The application of RFID to industrial processes has a strategic approach, seeking to improve customer satisfaction and new business opportunities, and has an operational approach focusing on operational efficiency and flexibility of the processes. There is a great application of RFID in logistics, warehouse and supply chain processes seeking tracking materials, increase supply chain visibility, labor savings, shrinkage reduction and inventory visibility. In this scenario, this paper aims to evaluate logistics projects applied to the brazilian aircraft industry using the AHP - Analytic Hierarchy Process with ratings, in addition to the identification and evaluation of the characteristics that motivate and restrict the use of technology through a literature review and a survey / Mestre
82

Fast RFID counting under unreliable radio channels.

January 2009 (has links)
Sze, Wai Kit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 77-83). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.vi / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Background and Related Work --- p.8 / Chapter 3 --- RFID Tag-set Cardinality estimation based on a Two-parameter implicit Channel Model --- p.13 / Chapter 3.1 --- System Model --- p.14 / Chapter 3.2 --- Number of Empty Slots Observed by the Reader --- p.16 / Chapter 3.3 --- Estimator Accuracy and Performance Analysis --- p.25 / Chapter 3.4 --- Results and Discussions --- p.32 / Chapter 3.5 --- Chapter Summary --- p.41 / Chapter 4 --- RFID Tag-set Cardinality estimation over Unknown Channel --- p.42 / Chapter 4.1 --- System Model --- p.43 / Chapter 4.2 --- Baseline: The Union-based approach --- p.45 / Chapter 4.2.1 --- Motivation --- p.46 / Chapter 4.2.2 --- Union Algorithm --- p.46 / Chapter 4.2.3 --- Analysis of the Union algorithm --- p.47 / Chapter 4.3 --- "Probabilistic Tag-counting over Lossy, Unknown channels via the Mh model" --- p.52 / Chapter 4.3.1 --- "Novel Interpretation of Mh for RFID Counting over Lossy, Unknown Channels" --- p.52 / Chapter 4.3.2 --- The Moment Estimator --- p.55 / Chapter 4.3.3 --- Sample Coverage Estimator --- p.57 / Chapter 4.3.4 --- Estimating the overall Tag population t --- p.59 / Chapter 4.4 --- Performance Validation and Comparison --- p.62 / Chapter 4.5 --- Chapter Summary --- p.65 / Chapter 5 --- Conclusions and Future Work --- p.73 / Chapter A --- Proof of Equation (3.6) in Chapter 3 --- p.75 / Bibliography --- p.77
83

New directions in advanced RFID systems.

Ranasinghe, Damith Chinthana January 2007 (has links)
Title page, abstract and table of contents only. The complete thesis in print form is available from the University of Adelaide Library. / A combination of Radio Frequency Identification technology and ubiquitous computing are revolutionising the manner in which we look at simple objects. Radio Frequency Identification (RFID) allows RFID labeled objects to be identified at a distance without physical contact, and ubiquitous computing provides a virtually connected environment for the objects. RFID labels are frequently referred to as the next generation barcodes. RFID Systems provide increased productivity, efficiency, convenience and many advantages over bar codes for numerous applications, especially global supply chain management. RFID labeling has a number of advantages over conventional bar code systems. The optics based bar code systems could be rendered useless by common everyday environments containing dirt, dust, smoke, grease, condensation and by misorientation and misalignment. Furthermore bar codes are subject to fraudulent duplication and counterfeiting with minimal effort. However, there are limitations and constraints inherent to RFID technology: semiconductor thresholds, limits on transmitted power, costs, antenna and coupling inefficiencies. Thus it is important for RFID designers to understand these limitations and constraints in order to optimise system designs and overcome inefficiencies where possible. Therefore the work presented in this dissertation seeks to improve the performance of advanced RFID systems by overcoming a number of these limitations. Prior to a discussion of improving performance, the author's interpretation of a modem RFID system along its evolutionary path as a ubiquitous RFID network and its application to supply chain management is described. Performance improvements are achieved by: the development of electromagnetic theory for RFID system analysis and optimisation; design and development of interrogator antennas; analysis of electrically small and tiny antennas for RFID labels; and development and utilisation of a design methodology for creating high performance label antennas and antennas for tagging metallic objects. Implementations of RFID systems have raised concerns regarding information security and possible violations of end-user privacy. The most profound concerns are raised against low cost RFID technology because of its potential for mass scale deployment, its pervasive nature, and the resource limitations preventing the provision of strong cryptographic solutions. There is a growing need in the RFID community to discover and develop techniques and methods to overcome various hurdles posed by the above-mentioned concerns. Thus, the thesis also considers the vulnerabilities of low cost RFID systems and associated insecurities and privacy concerns resulting from the latter. Prior to addressing such concerns impeding the deployment of low cost RFID technology, a framework within which to provide security services is also detailed. It has become important to both defme and identity a framework based around low cost RFID systems since RFID has become a "catch all" phrase for various other forms of technology. Addressing security and privacy of low cost RFID systems requires novel thinking. The later parts of the thesis outline design considerations for security mechanisms and a number of practicable solutions for providing the features of: mutual authentication; confidentiality; message content security; product authentication; anonymity and untraceability, that are necessary for low cost RFID systems to overcome the weaknesses identified in this dissertation. Implementing these security mechanisms requires the generation of true random tag parameters and true random numbers. Achieving these objectives using a hardware based true random number generator is also described and analysed. A final part of the thesis focuses on active RFID labels and improving their performance. The primary concern with active labels is the life of the onboard battery. Turn-on circuits provide a method of turning "on" and "off" an active label remotely to conserve valuable battery power. Analysis, development and testing of a turn-on circuit concept, based on interrogator field sensing, have provided a means of remotely activating and deactivating active RFID labels and conserving battery power. The final chapter of this thesis provides a detailed analysis, based on coupling relations between electromechanical systems, for evaluating the feasibility of a theft detection sensor, based on a turn-on circuit for an active RFID label, for preventing the theft of high value items. While low cost RFID needs to overcome certain security and privacy related barriers, RFID technology does provide novel and valid approaches to such security related applications as product authentication, anti-counterfeiting and theft detection. It is believed that the contributions from this thesis will extend and elaborate on the existing knowledge base, paving the way forward to allow further significant deployment of advanced RFID techno logy. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1368084 / Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 2007
84

Ubiquitous monitoring of distributed infrastructures /

Jiang, Bing, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 134-141).
85

Crack detection using a passive wireless strain sensor

Lantz, Gabriel Antoine 29 August 2011 (has links)
Nearly one third of the 604,426 bridges in the United-States are either structurally deficient or functionally obsolete. Monitoring these bridges is essential to avoid catastrophic accidents. In steel bridges fatigue induced crack/rupture, which is one of the most common modes of failure, can be avoided if the crack is detected at the early stages of its formation. Cracks usually originate at stress concentration areas but their precise origin is random. Such strain concentration can be monitored with traditional strain gages, but their installation requires lengthy wires and equipment, which are expensive and labor intensive. Therefore wireless sensors are being developed to cope with these problems. In this work, a passive wireless strain sensor based on RFID technology is described. The sensor is a patch antenna that resonates at a certain frequency, which shifts in presence of strain. The relation between the resonance frequency and the strain is approximately linear. The slope of the relation is called sensitivity. The behavior of the sensor's sensitivity is studied using experimental work and simulations that couple electromagnetism and mechanics. The sensitivity measured in experiments and in simulations in presence of uniform strain is different. This difference is lower for the sensitivity in presence of a crack, probably due to a parameter variation that is currently not accurately modeled in the simulations.
86

Improved Performance of a Radio Frequency Identification Tag Antenna on a Metal Ground Plane

Prothro, Joel Thomas 18 May 2007 (has links)
Simulation and experiments quantify the effect of moving a horizontal dipole antenna close to a metal ground plane. Solutions to the radiation problems are offered.
87

Design and development of novel radio frequency identification (RFID) tag structures

Yang, Li 13 November 2009 (has links)
The objective of the proposed research is to design and develop a series of radio frequency identification (RFID) tag structures that exhibit good performance characteristics with cost optimization and can be realized on flexible substrates such as liquid crystal polymer (LCP), paper-based substrate and magnetic composite material for conformal applications. The demand for flexible RFID tags has recently increased tremendously due to the requirements of automatic identification in various areas. Several major challenges existing in today's RFID technologies need to be addressed before RFID can eventually march into everyone's daily life, such as how to design high performance tag antennas with effective impedance matching for passive RFID IC chips to optimize the power performance, how to fabricate ultra-low-cost RFID tags in order to facilitate mass production, how to integrate sensors with passive RFID tags for pervasive sensing applications, and how to realize battery-free active RFID tags in which changing battery is not longer needed. In this research, different RFID tag designs are realized on flexible substrates. The design techniques presented set the framework for answering these technical challenges for which, the focus will be on RFID tag structure design, characterization and optimization from the perspectives of both costs involved and technical constraints.
88

Efficient bit encoding in backscatter wireless systems

Graf, Patrick Anthony 08 April 2010 (has links)
As the size and power consumption of microelectronic circuits continues to decrease, passively-powered sensors promise to come to the forefront of commercial electronics. One of the most promising technologies that could realize this goal is backscatter sensing. Backscatter sensors could harvest power from and modulate data onto an impinging carrier waveform. Currently radio frequency identification (RFID) technology passively powers itself and transmits statically stored data. However, this technology has two major weaknesses: lack of resiliency against narrowband interference and slow data rates. Both of these issues could be detrimental in sensing applications. This thesis will lay out a method for addressing both of these weaknesses through a unique application of spread spectrum encoding. Instead of spread spectrum being viewed as the multiplication of an already encoded data sequence with a periodic pseudorandom sequence, each sequence could be viewed in an aperiodic manner, where a single period of a pseudorandom sequence represents a data symbol. In this manner, backscatter sensors not only benefit from the increased resiliency that spread spectrum provides, but also can have higher data rates, since multiple bits can be encoded on a single symbol and multiple nodes can be read simultaneously, using spread spectrum multiple access techniques. In this thesis, 63-chip and 255-chip Kasami sequences, as well as 127-chip Gold sequences, will be analyzed for their use in various aperiodic direct sequence spread spectrum/multiple access system configurations (systems that have up to three nodes and use up to four different aperiodic sequences per node to represent different symbols). For each different configuration, near-"ideal" code configurations/rotations will be determined for use in the system.
89

Ultra high frequency (UHF) radio-frequency identification (RFID) for robot perception and mobile manipulation

Deyle, Travis 14 November 2011 (has links)
Personal robots with autonomy, mobility, and manipulation capabilities have the potential to dramatically improve quality of life for various user populations, such as older adults and individuals with motor impairments. Unfortunately, unstructured environments present many challenges that hinder robot deployment in ordinary homes. This thesis seeks to address some of these challenges through a new robotic sensing modality that leverages a small amount of environmental augmentation in the form of Ultra High Frequency (UHF) Radio-Frequency Identification (RFID) tags. Previous research has demonstrated the utility of infrastructure tags (affixed to walls) for robot localization; in this thesis, we specifically focus on tagging objects. Owing to their low-cost and passive (battery-free) operation, users can apply UHF RFID tags to hundreds of objects throughout their homes. The tags provide two valuable properties for robots: a unique identifier and receive signal strength indicator (RSSI, the strength of a tag's response). This thesis explores robot behaviors and radio frequency perception techniques using robot-mounted UHF RFID readers that enable a robot to efficiently discover, locate, and interact with UHF RFID tags applied to objects and people of interest. The behaviors and algorithms explicitly rely on the robot's mobility and manipulation capabilities to provide multiple opportunistic views of the complex electromagnetic landscape inside a home environment. The electromagnetic properties of RFID tags change when applied to common household objects. Objects can have varied material properties, can be placed in diverse orientations, and be relocated to completely new environments. We present a new class of optimization-based techniques for RFID sensing that are robust to the variation in tag performance caused by these complexities. We discuss a hybrid global-local search algorithm where a robot employing long-range directional antennas searches for tagged objects by maximizing expected RSSI measurements; that is, the robot attempts to position itself (1) near a desired tagged object and (2) oriented towards it. The robot first performs a sparse, global RFID search to locate a pose in the neighborhood of the tagged object, followed by a series of local search behaviors (bearing estimation and RFID servoing) to refine the robot's state within the local basin of attraction. We report on RFID search experiments performed in Georgia Tech's Aware Home (a real home). Our optimization-based approach yields superior performance compared to state of the art tag localization algorithms, does not require RF sensor models, is easy to implement, and generalizes to other short-range RFID sensor systems embedded in a robot's end effector. We demonstrate proof of concept applications, such as medication delivery and multi-sensor fusion, using these techniques. Through our experimental results, we show that UHF RFID is a complementary sensing modality that can assist robots in unstructured human environments.
90

Flexible magnetic composite for antenna applications in radio frequency identification (RFID)

Martin, Lara Jean 17 March 2008 (has links)
This work includes formulation of mechanically flexible magnetic composites and application to a quarter-wavelength microstrip patch antenna benchmarking structure operating in the lower UHF spectrum (~300-500 MHz) to investigate capability for miniaturization. A key challenge is to introduce sufficiently low magnetic loss for successful application. Particles of NiZn ferrite and BaCo ferrite, also known as Co2Z, were characterized. Flexible magnetic composites comprised of 40 vol% NiZn ferrite or BaCo ferrite particles in a silicone matrix were formulated. Effects of treating the particles with silane in the formulation process were not detectable, but larger particle size showed to increase complex permittivity and complex permeability. By comparing complex permittivity and complex permeability of the composites, BaCo ferrite was selected for the antenna application. Antennas on the developed magnetic composite and pure silicone substrates were electromagnetically modeled in a full-wave FEM EM solver. A prototype of the antenna on the magnetic composite was fabricated. Good agreement between the simulated and measured results was found. Comparison of the antennas on the magnetic composite versus the pure silicone substrate showed miniaturization capability of 2.4X and performance differences of increased bandwidth, reduced Q, and reduced gain. A key finding of this study is that a small amount of permeability (relative permeability ~2.5) can provide relatively substantial capability for miniaturization, while sufficiently low magnetic loss can be introduced for successful application at the targeted operating frequency. The magnetic composite showed the capability to fulfill this balance and to be a feasible option for RFID applications in the lower UHF spectrum.

Page generated in 0.1599 seconds