• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A semi-empirical formulation for determination of rain attenuation on terrestrial radio links.

Odedina, Modupe Olubunmi. January 2010 (has links)
Advances in today’s fast growing communication systems have resulted in congestion in the lower frequency bands and the need for higher capacity broadband services. This has made it inevitable for service providers to migrate to higher frequency bands so as to accommodate the ever increasing demands on radio communication systems. However, the reliability of such systems at these frequency bands tend to be severely degraded due to some natural atmospheric phenomena of which rain is the dominant factor. This is not to say that other factors have become unimportant; however, if attenuation by rain is so severe that a radio link is unavailable for use, then other factors become secondary. Therefore, it is paramount to establish a model capable of predicting the behaviour of these systems in the presence of rain. This study employs a semi-empirical approach for the formulation of rain attenuation models using the knowledge of rain rate, raindrop size distribution, and a signal level measurement recorded at 19.5 GHz on a horizontally polarized terrestrial radio link. The semi-empirical approach was developed by considering the scattering effect of an electromagnetic wave propagating through a medium containing raindrops. The complex forward scattering amplitudes for the raindrops are determined for all raindrop sizes at different frequencies, utilizing the Mie scattering theory on spherical dielectric raindrops. From these scattering amplitudes, the extinction cross-sections for the spherical raindrops are calculated. Applying the power-law regression to the real part of the calculated extinction cross-section, power-law coefficients are determined at different frequencies. The power-law model generated from the extinction crosssection is integrated over different raindrop-size distribution models to formulate theoretical rain attenuation models. The developed rain attenuation models are used with 0.01 R rain rate statistics determined for four locations in different rain climatic zones in South Africa to calculate the specific rain attenuation. From a horizontally polarized 6.73 km terrestrial line-of-sight link in Durban, South Africa,experimental rain attenuation measurements were recorded at 19.5 GHz. These rain attenuation measurements are compared with the results obtained from the developed attenuation models with the same propagation parameters to establish the most appropriate attenuation models that describe the behaviour of radio link performance in the presence of rain. For the purpose of validating the results, it is compared with the ITU-R rain attenuation model. This study also considers the characteristics and variations associated with rain attenuation for terrestrial communication systems. This is achieved by utilizing the ITU-R power-law rain attenuation model on 5-year rain rate data obtained from the four different climatic rain zones in South Africa to estimate the cumulative distributions of rain attenuation. From the raindrop size and 1-minute rain rate measurement recorded in Durban with a distrometer over six months, rain events over the six months are classified into drizzle, widespread, shower and thunderstorm rain types and the mean rain rate statistics determined for each class of rain. Drop-size distribution for all the rain types is estimated. This research has shown a statistical analysis of rain fade data and proposed an empirical rain attenuation model for South Africa localities. This work has also drawn out theoretical rain attenuation prediction models based on the assumption that the shapes of raindrops are spherical. The results predicted from these theoretical attenuation models have shown that it is not the raindrop shapes that determine the attenuation due to rain, but the raindrop size distribution and the rain rate content in the drops. This thesis also provides a good interpretation of cumulative rain attenuation distribution on seasonal and monthly basis. From these distributions, appropriate figures of fade margin are derived for various percentages of link availability in South Africa. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2010.
2

Rain attenuation modelling for line-of-sight terrestrial links.

Naicker, Kumaran. January 2006 (has links)
In today's rapidly expanding communications industry, there is an ever-increasing demand for greater bandwidth, higher data rates and better spectral efficiency. As a result current and future communication systems will need to employ advanced spatial, temporal and frequency diversity techniques in order to meet these demands. Even with the utilisation of such techniques, the congestion of the lower frequency bands, will inevitably lead to the increased usage of the millimetre-wave frequencies in terrestrial communication systems. Before such systems can be deployed, radio system designers require realistic and readily useable channel and propagation models at their disposal to predict the behaviour of such communication links and ensure that reliable and efficient data transmission is achieved The scattering and attenuation of electromagnetic waves by rain is a serious problem for microwave and millimetre-wave frequencies. The conversion of rain rate to specific attenuation is a crucial step in the analysis of the total path attenuation and hence radio-link availability. It is now common practice to relate the specific attenuation and the rain rate using the simple power law relationship. The power-law parameters are then used in the path attenuation model, where the spatial variations of rainfall are estimated by a path-integration of the rain rate. These power law parameters are strongly influenced by the drop-size-distribution (DSD). Thus an examination of the various DSDs and their influence on the specific attenuation and link availability is warranted. Several models for the DSD have been suggested in literature, from the traditional exponential, to the gamma, log normal and Weibull distributions. The type of DSD varies depending on the geographical location and rainfall type. An important requirement of the DSD is that it is consistent with rain rate (i.e. the DSD must satisfy the rain-rate integral equation). Thus before application in the specific attenuation calculations, normalisation needs to be performed to ensure the consistency, as done in this study. Once the specific attenuation has been evaluated for necessary frequency and rain-rate range, path averaging is performed to predict the rain attenuation over the communication link. The final step in this dissertation is the estimation of the percentage of time of such occurrences. For this, cumulative time statistics of surface point rain rates are needed. The resulting cumulative distribution model of the fade depth and duration due to rain is a valuable tool for system designers. With such models the system designer can then determine the appropriate fade margin for the communication system and resulting period of unavailability for the link / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2006.
3

Rain cell size attenuation modelling for terrestrial and satellite radio links.

Akuon, Peter Odero. January 2011 (has links)
There is need to improve prediction results in rain attenuation in order to achieve reliable wireless communication systems. Existing models require improvements or we need fresh approaches. This dissertation presents a model of rain attenuation prediction for terrestrial and satellite radio links based on a novel approach. This approach postulates that the difference in rain attenuation for various locations is attributed to the dissimilar rain drop sizes and rain cell diameter sizes and that cell sizes derived from local measurements would depict the true nature of rain cells better than the cells derived from long term rain data gathered from different climates. Therefore all other link parameters used in the attenuation equation are presented by the use of mathematical analysis; but the rain cell size is derived from local rain rate measurements. The physical link aspects considered in the mathematical attenuation model are: the Fresnel ellipsoid of the link path, the effect of elevation angle, the rain cell diameter size and the shape of growth of rain rates in the cell. The effect of the elevation angle of the link on the scale of attenuation is accounted for through the proposed coefficient of elevation equation. The coefficient of elevation is considered to modify the size of the rain cell diameter in proportion to the elevation angle of the link and the rain rate growth is taken to be of the truncated-Gaussian form. On the other hand, the rain cell diameter is derived from rain rate measurements as a power law model and substituted in the attenuation expression. The rain cell size model evaluated in this dissertation is based on point rain rate measurement data from the disdrometer located at the University of KwaZulu-Natal, South Africa. The “Synthetic Storm” technique is applied to develop the rain cell diameter distributions and the rain cell diameter model. In addition, the impact of the rain cell diameter size model in site diversity and cellular network-area planning for the region is discussed. To validate the model for terrestrial links, attenuation data collected from Durban, South Africa is used while that for satellite links, attenuation data from 15 links which are located in tropical climatic zones are used. In each case, the new model is tested against some well-known global rain attenuation prediction models including the standard ITU-R models. The performance of the proposed models for the sampled radio links based on error estimations shows that improvements have been achieved and may be regarded as a universal tropical model especially for satellite links. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
4

Determination of millimetric signal attenuation due to rain using rain rate and raindrop size distribution models for Southern Africa.

Malinga, Senzo Jerome. 15 September 2014 (has links)
The advantages offered by Super High Frequency (SHF) and Extremely High Frequency (EHF) bands such as large bandwidth, small antenna size, and easy installation or deployment have motivated the interest of researchers to study those factors that prevent optimum utilization of these bands. Under precipitation conditions, factors such as clouds, hail, fog, snow, ice crystals and rain degrade link performance. Rain fade, however, remains the dominant factor in the signal loss or signal fading over satellite and terrestrial links especially in the tropical and sub-tropical regions within which South Africa falls. At millimetre-wave frequencies the signal wavelength approaches the size of the raindrops, adversely impacting on radio links through signal scattering and absorption. In this work factors that may hinder the effective use of the super high frequency and extremely high frequency bands in the Southern African region are investigated. Rainfall constitutes the most serious impairment to short wavelength signal propagation in the region under study. In order to quantify the degree of impairment that may arise as a result of signal propagation through rain, the raindrops scattering amplitude functions were calculated by assuming the falling raindrops to be oblate spheroidal in shape. A comparison is made between the performance of the models that assume raindrops to be oblate spheroidal and those that assume them to be spherical. Raindrops sizes are measured using the Joss-Waldvogel RD-80 Distrometer. The study then proposes various expressions for models of raindrops size distributions for four types of rainfall in the Southern Africa region. Rainfall rates in the provinces in South Africa are measured and the result of the cumulative distribution of the rainfall rates is presented. Using the information obtained from the above, an extensive calculation of specific attenuation and phase shift in the region of Southern Africa is carried out. The results obtained are compared with the ITU-R and those obtained from earlier campaigns in the West African sub region. Finally, this work also attempts to determine and characterize the scattering process and micro-physical properties of raindrops for sub-tropical regions like South Africa. Data collected through a raindrop size measurement campaign in Durban is used to compare and validate the developed models. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2014.
5

Modeling of raindrop size distribution and critical diameters for rainfall attenuation over microwave links in Southern Africa.

Adetan, Oluwumi. 15 September 2014 (has links)
The inability of service providers to constantly meet the design target of 99.99 % availability of the line-of-sight (LOS) microwave links has caused concern among both the operators and consumers. The non-availability of the links is predominantly due to propagation impairments along the propagation link. These propagation effects include cloud, snow, fog, gas attenuation, rain and atmospheric scintillation. Various studies have shown high vulnerability of radio communication systems operating at microwave (3-30 GHz) and millimeter wave (30-300 GHz) to rainfall attenuation especially in the tropical regions characterized by heavy rainfall and relatively large rain drops when compared to the temperate regions. In order to understand the effects of attenuation due to rain on communication systems in any locality (region), a good knowledge of the raindrop size distribution (DSD) and the rainfall rate estimates is necessary for accurate prediction and estimation of the rainfall attenuation. For this study, experimental raindrop size measurements gathered over a period of three years, using the Joss-Waldvogel RD-80 disdrometer installed at the roof top of the Electrical, Electronic and Computer Engineering building, University of Kwa-Zulu Natal, Durban, a subtropical location in South Africa, is analysed. Disdrometer measurements, sampled at one-minute rate over a period of nine months from Butare, an equatorial site in Rwanda, is also analysed for the purpose of comparison. The estimated R0.01 values for Durban and Butare are employed for the purpose of analysis. Based on the statistical analysis of the measured data samples, DSD parameters are proposed from the negative exponential, modified gamma, Weibull and the lognormal models. The DSD models are compared to models from other countries within and outside the region. The Mie scattering approximation at temperature of 20oC for spherical raindrop shape is adopted for the estimation of the scattering functions. The study further investigates the influence of critical raindrop diameters on the specific rain attenuation for the annual, seasonal and various rainfall regimes in southern Africa. This is achieved analytically by integrating the total rainfall attenuation over all the raindrop sizes and observing the differential change in the attenuation over a given range of drop size diameters. The peak diameter at which the specific rainfall attenuation is maxima is determined for different rainfall regimes. Finally, the cross-polarisation discrimination (XPD) due to rain over Durban is computed at two elevation angles. The results of this study will be helpful for the proper design and allocation of adequate fade margins to achieve the expected quality of service (QoS) in a radio communication system operating in the Southern Africa region. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2014.

Page generated in 0.1137 seconds