Spelling suggestions: "subject:"interferenceprevention"" "subject:"interferencerejection""
1 |
Interference cancellation in broadband wireless systems utilizing phase aligned injection-locked oscillatorsWang, Xin, 1971- 24 September 2012 (has links)
Linearity enhancement, especially within the front end of a wireless receiver IC design, is highly desirable since it allows the front-end to withstand strong interferers from co-existing communication standards or other wireless radiators. We propose an interferer suppression method based on feed-forward cancellation that uses an injectionlocked oscillator (ILO) to extract the interferer from the incident spectrum. The technique is expected to be useful in environments where a strong narrowband interferer appears along with a wideband desired signal, such as ultra-wideband (UWB) and emerging cognitive-radio applications. The ILO is further embedded within a phase-locked loop which provides several advantages including ILO center frequency self tuning and automatic phase alignment between the main signal path and the auxiliary path. An IC that uses this approach is implemented in a UMC 0.18[mu]m RFCMOS process. In measurement, the chip demonstrates 20dB suppression for phase and frequency modulated interferers while maintaining around 18dB power gain and noise figure below 5dB, measured with an off-chip balun for the desired signal. Techniques for canceling amplitude modulated interferers, though not included in the integrated circuit, were also demonstrated with an off chip amplitude control loop. Over 20dB rejection was obtained with AM interferers with properly scaled envelop signal applied to the ILO bias port. A second LNA was connected in cascade with the system to emulate the input stage of a down-conversion mixer and the cascaded P1dB was improved over 16dB with cancellation on. Gain compression above 13dB was also observed when auxiliary path was disabled, at the same input level as the P1dB with cancellation applied. / text
|
2 |
Radio Resource Control Approaches for LTE-Advanced Femtocell NetworksAlotaibi, Sultan Radhi 08 1900 (has links)
The architecture of mobile networks has dramatically evolved in order to fulfill the growing demands on wireless services and data. The radio resources, which are used by the current mobile networks, are limited while the users demands are substantially increasing. In the future, tremendous Internet applications are expected to be served by mobile networks. Therefore, increasing the capacity of mobile networks has become a vital issue. Heterogeneous networks (HetNets) have been considered as a promising paradigm for future mobile networks. Accordingly, the concept of small cell has been introduced in order to increase the capacity of the mobile networks. A femtocell network is a kind of small cell networks. Femtocells are deployed within macrocells coverage. Femtocells cover small areas and operate with low transmission power while providing high capacity. Also, UEs can be offloaded from macrocells to femtocells. Thus, the capacity can be increased. However, this will introduce different technical challenges. The interference has become one of the key challenges for deploying femtocells within a certain macrocells coverage. Undesirable impact of the interference can degrade the performance of the mobile networks. Therefore, radio resource management mechanisms are needed in order to address key challenges of deploying femtocells. The objective of this work is to introduce radio resource control approaches, which are used to increase mobile networks' capacity and alleviate undesirable impact of the interference. In addition, proposed radio resource control approaches ensure the coexistence between macrocell and femtocells based on LTE-Advanced environment. Firstly, a novel mechanism is proposed in order to address the interference challenge. The proposed approach mitigates the impact of interference based on controlling radio sub-channels' assignment and dynamically adjusting the transmission power. Secondly, a dynamic strategy is proposed for the FFR mechanism. In the FFR mechanism, the whole spectrum is divided into four fixed sub-channels and each sub-channel is assigned for a different sub-area after splitting the macrocell coverage area into four sub-areas. The objective of the proposed scheme is to divide the spectrum dynamically based on the QoS indicators for each sub-area. Lastly, a novel packet scheduling scheme is proposed to improve the performance of femtocell networks. The proposed scheduling strategy assigns radio resources based on two objectives: increasing the network capacity and achieving better fairness among attached UEs.
|
Page generated in 0.1303 seconds