• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Search for sterile neutrinos in β-decays / Recherche de neutrinos stériles dans les désintégrations β

Altenmüller, Konrad Martin 10 October 2019 (has links)
Le travail présenté dans cette thèse porte sur la recherche de neutrino stérile à l'aide de désintégrations β dans les expériences SOX et TRISTAN. Le neutrino stérile est une particule hypothétique, solidement établi théoriquement, qui ne prendrait part à aucune interaction fondamentale, gravité mise à part. Étant entendu que le neutrino stérile se mélange avec les neutrinos actifs connus, l'existence de ces premiers peut être étudiée directement en laboratoire. L'expérience SOX a été conçue pour explorer l'existence d'un neutrino stérile d'une masse autour de l'électronvolt (eV). Un neutrino stérile avec une telle masse permettrait d'expliquer plusieurs anomalies observées à courte distance de sources (quelques mètres) lors de mesures d'oscillations de neutrinos de basses énergies (quelques MeV). SOX avait pour projet d'utiliser le détecteur de neutrinos solaire déjà existant Borexino, et d'observer un signal d'oscillation vers le stérile à l'intérieur même du volume actif du détecteur. La source radioactive de 5.5 PBq et positionnée à 8.5 m du centre du détecteur, émettrait des antineutrinos électroniques via la désintégration β du ¹⁴⁴Ce et du ¹⁴⁴Pr. Une des clés de l'observation de cette oscillation, est la connaissance précise de l'activité de la source. Une telle activité peut être déterminée en mesurant la chaleur dégagée par la source. C'est la raison pour laquelle l'INFN Genova et la TUM ont développé conjointement un calorimètre dédié. La chaleur dégagée par la radioactivité est alors captée par un échangeur puis transmise à un circuit d'eau étroitement contrôlé. Le calorimètre a été assemblé, optimisé puis étalonné avec succès. La perte de chaleur du circuit fut déterminée lors des mesures d'étalonnage grâce à un chauffage électrique. Des variations des conditions expérimentales et une isolation thermique sophistiquée ont permis d'opérer avec des pertes de chaleur négligeables. Il a ainsi été démontré que la puissance thermique de la source pouvait être estimée, en 5 jours seulement, avec une précision supérieure à 0,2%. Malheureusement, le programme SOX a dû être annulé. Le projet TRISTAN, quant à lui, tend à démontrer l'existence d'un neutrino stérile avec une masse de l'ordre du kilo-électronvolt (keV). Si le neutrino stérile à l'eV tente d'apporter une réponse aux différentes anomalies observées lors de mesures d'oscillation, le neutrino stérile au keV, en tant que potentiel candidat matière noire. Le projet TRISTAN cherche à mesurer l'empreinte de ce nouvel état de masse sur le spectre du tritium dans le cadre de l'expérience KATRIN. Cette dernière vise à déterminer la masse effective du neutrino (actif) en mesurant l'extrémité du spectre de tritium avec une excellente résolution et un faible taux de comptage. Une fois la mesure achevée, le détecteur de KATRIN sera modifié afin d'effectuer une mesure différentielle et intégrale de l'ensemble du spectre en tritium: c'est le projet TRISTAN. Le détecteur actuel sera remplacé par un nouveau détecteur de silicium à dérive (SDD) de 3500 pixels permettant une résolution de 3% à 6 keV et pouvant supporter un taux de comptage montant jusqu'à 10⁸ coups par seconde, activité maximum attendue. Un prototype a été testé avec succès et une première mesure de tritium a été réalisé au spectromètre de masse neutrino Troitsk afin d'étudier les erreurs systématiques et de développer des méthodes d'analyses pertinentes. Un premier ajustement cohérent du spectre tritium différentiel acquis lors de cette installation, a démontré la faisabilité du projet. TRISTAN lui-même est toujours en cours de développement mais les caractérisations du détecteur et les études de systématiques sont plus qu'encourageantes pour la poursuite du projet. La première investigation de neutrino stérile avec le détecteur de TRISTAN sur le site de KATRIN est prévue après la mesure de masse, en cours à Karlsruhe, aux alentours de 2024. / The work presented in this thesis is about the sterile neutrino search with the two experiments SOX and TRISTAN based on the β-decay. Sterile neutrinos are theoretically well motivated particles that do not participate in any fundamental interaction except for the gravitation. With the help of these particles one could elegantly explain the origin of the neutrino mass, dark matter and the matter-antimatter asymmetry in the universe. As sterile neutrinos can mix with the known active neutrinos, they could be discovered in laboratory searches. The SOX experiment was designed to search for a sterile neutrino with a mass in the eV-range. This particular mass range is motivated by several anomalous observations at short-baseline neutrino experiments that could be explained by an additional oscillation with a length in the order of meters that arises from an eV-scale sterile neutrino. For SOX it was planned to use the existing Borexino solar neutrino detector to search for an oscillation signal within the detector volume. The neutrinos are emitted from a 5.5 PBq electron-antineutrino source made of the β-decaying isotopes ¹⁴⁴Ce and ¹⁴⁴Pr, located at 8.5 m distance from the detector center. For the analysis of the signal it is crucial to know the source activity. This parameter is determined by measuring the decay heat of the source with a thermal calorimeter that was developed by TUM and INFN Genova. The decay heat is measured through the temperature increase of a well-defined water flow in a heat exchanger that surrounds the source. The calorimeter was assembled, optimized and characterized. Heat losses were determined through calibration measurements with an electrical heat source. Adjustable measurement conditions and an elaborate thermal insulation allowed an operation with negligible heat losses. It was proven that the power of a decaying source can be measured with <0.2% uncertainty in a single measurement that lasts ~5 days. Unfortunately the SOX experiment was canceled after a technological problem rendered the source production with the required activity and purity impossible. The TRISTAN project is an attempt to discover sterile neutrinos with masses in the order of keV. In contrast to eV-scale sterile neutrinos that are motivated by several anomalies observed in terrestrial experiments, the existence of sterile neutrinos with masses in the keV range could resolve cosmological and astrophysical issues, as they are dark matter candidates. The TRISTAN project is an extension of the KATRIN experiment to search for the signature of keV-scale sterile neutrinos in the tritium β-spectrum. KATRIN itself is attempting to determine the effective neutrino mass by measuring the end point of the tritium spectrum at low counting rates. The KATRIN setup will be modified after the neutrino mass measurements are finished to conduct a differential and integral measurement of the entire tritium spectrum. This project is called TRISTAN. The current detector will be replaced by a novel 3500-pixel silicon drift detector system that has an outstanding energy resolution of a few hundred eV and can handle rates up to 10⁸ counts per second as they occur when the entire spectrum is scanned. Prototype detectors were successfully tested and first tritium data was taken at the Troitsk ν-mass spectrometer to study systematic effects and develop analysis methods. A successful fit of the differential tritium spectrum proved the feasibility of this approach. TRISTAN itself is still at an early stage, but the detector development and systematic studies are well on track and delivered so far encouraging results. The sterile neutrino search is scheduled after the KATRIN neutrino mass program is finished in ~2024.
2

Détermination du rapport d’embranchement de la transition super-permise du carbone 10 et développement et intégration de la ligne de faisceau PIPERADE au CENBG / Determination of the branching ratio of the superallowed transition of carbon 10 and development of the beam line PIPERADE at CENBG

Aouadi, Mehdi 15 December 2017 (has links)
Les études de la radioactivité bêta dans les milieux nucléaires permettent en partie de participer à la détermination d’un des paramètres qui décrit l'interaction faible (la constante de couplage vectoriel). Pour cela, de nombreuses mesures permettent déjà d’atteindre de grandes précisions sur ce paramètre pour un grand nombre de noyaux des transitions bêta super-permise. Cependant, pour le carbone 10, l'incertitude relative du rapport d'embranchement reste encore élevée par rapport aux autres noyaux pères avec une valeur de l’ordre de 0,13 %. Ceci est dû à l’énergie du photon émis par l’état 0+ du noyau fils qui est de 1021,6 keV, c’est-à-dire proche de l’énergie d’empilement de deux signaux de photons de 511 keV. En mai 2015, notre groupe a réalisé, à ISOLDE au CERN, une expérience afin de mesurer très précisément cette transition. Pour produire le carbone 10,nous avons réalisé des réactions nucléaires qui produisaient en grandes parties les noyaux d’intérêts mais aussi des contaminants de mêmes masses émetteurs de bêta+. Afin de réduire l’empilement, il aurait été nécessaire de mieux séparer les éléments ou d’estimer celui-ci à partir de données équivalentes avec le néon 19. Ainsi, nous avons calculé une constante d’empilement qui dépend du temps de mise en forme est qui est de l’ordre de 0,1μs. Par la suite, l’analyse de nos données carbone 10 a permis d’obtenir un rapport d’embranchement de 1,500(4) % alors que la moyenne des valeurs de la littérature donne1,4645(19) %. Dans le but de produire plus d’espèces de noyaux et d'augmenter l'intensité des faisceaux, le GANIL (Grand Accélérateur National d'Ions Lourds) développe actuellement un nouvel accélérateur ainsi qu'un ensemble de cibles basées sur la méthode ISOL. Pour réduire le dépôt de contaminants aux points de mesures, tel que c'était le cas pour la mesure du carbone 10 à ISOLDE, la communauté de physiciens souhaite aussi développer un ensemble d'outils de séparations. Dans ce cadre, notre groupe participe depuis 2011 au développement de deux de ces outils : un séparateur de haute-résolution (HRS) pour séparer des noyaux dont le pouvoir de résolution en masse nécessaire (m/Δm) souhaité est de 20000et un double piège de Penning (PIPERADE) pour séparer les noyaux qui nécessite au maximum d’un pouvoir de résolution en masse de 100000. Ainsi, au CENBG, une ligne faisceau de test qui comprend une source d'ions FEBIAD, le quadrupôle radiofréquence regroupeur-refroidisseur GPIB, un aiguillage électrostatique et le double piège de Penning (PIPERADE) est en cours de développement. Lors des tests de ces dispositifs, nous avons observé une efficacité de transmission de l’ordre de 80 % du faisceau qui traverse le GPIB.Également, nous avons mesuré une émittance transverse de 3 pi.mm.mrad en comparaison de celle de 26 pi.mm.mrad observées en aval du GPIB. Par la suite, les simulations de laligne d’injection dans le piège de Penning ont permis de définir une décélération qui permet d’injecter 98 % des ions extraits du GPIB.Cette thèse se compose donc de deux parties : la détermination du rapport d'embranchement du carbone 10 et le développement et l'intégration au CENBG de la ligne de faisceau PIPERADE. / The beta radioactivity studies in nuclear medium allow to participate in thedetermination of one of the parameters that describes the weak interaction (the vectorcoupling constant). For this purpose, numerous measurements have already been made todetermine this parameter with great precision for superallowed transition nuclei. However,for carbon 10, the relative uncertainty of the branching ratio is still high compared to otherparent nuclei with a value of the order of 0.13%. This high uncertainty is due to photonenergy emitted of 1021.6 keV which is really closed to the energy due to pile-up of twophotons of 511 keV. In May 2015, our group conducted an experiment at ISOLDE at CERN tomeasure the branching ratio very precisely. The nuclear reactions needed to produce thenuclei gave a large amount of nuclei of interest but also contaminants of the same massewhich also emit beta+ particles. A pile-up ratio of around 0.1 μs was calculated. Then, wefound a branching ratio of 1.500(4) % whereas the average from litterature is 1.4645(19) %.To study more species of nuclei and increase the intensity of the beams, GANIL(Grand Accélérateur National d’Ions Lourds) is currently developing a new accelerator as wellas a set of targets based on ISOL method. In order to reduce the contaminants deposit atthe measurement points, as we saw for the measurement of carbon 10 at ISOLDE, thecommunity of physicists also wants to develop separation apparati. In this context, since2011, our group has been involved in the development of two of these tools: a highresolutionseparator (HRS) to separate nuclei which need a mass resolving power (m / Δm)around 20,000 and a double Penning trap (PIPERADE) to separate the nuclei which require amaximum resolution of 100,000. Thus, at CENBG, a test beam line that includes a FEBIAD ionsource, a RFQ cooler-buncher (GPIB), an electrostatic switch, and a double Penning trap(PIPERADE) is under development. During apparati tests, we observe a transmissionefficiency around 80 %. Also, we measure a transverse emittance about 3 pi.mm.mrad whichis lower than 26 pi.mm.mrad observed before the GPIB. By the way, simulations of the beamline permitted to decelerate the beam and inject 98 % of ions.This thesis consists of two parts: the determination of the carbon 10 branching ratioand the development and integration of the PIPERADE beam line at CENBG.

Page generated in 0.0557 seconds