• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parallel Sorting on the Heterogeneous AMD Fusion Accelerated Processing Unit

Delorme, Michael Christopher 18 March 2013 (has links)
We explore efficient parallel radix sort for the AMD Fusion Accelerated Processing Unit (APU). Two challenges arise: efficiently partitioning data between the CPU and GPU and the allocation of data in memory regions. Our coarse-grained implementation utilizes both the GPU and CPU by sharing data at the begining and end of the sort. Our fine-grained implementation utilizes the APU’s integrated memory system to share data throughout the sort. Both these implementations outperform the current state of the art GPU radix sort from NVIDIA. We therefore demonstrate that the CPU can be efficiently used to speed up radix sort on the APU. Our fine-grained implementation slightly outperforms our coarse-grained implementation. This demonstrates the benefit of the APU’s integrated architecture. This performance benefit is hindered by limitations in the APU’s architecture and programming model. We believe that the performance benefits will increase once these limitations are addressed in future generations of the APU.
2

Parallel Sorting on the Heterogeneous AMD Fusion Accelerated Processing Unit

Delorme, Michael Christopher 18 March 2013 (has links)
We explore efficient parallel radix sort for the AMD Fusion Accelerated Processing Unit (APU). Two challenges arise: efficiently partitioning data between the CPU and GPU and the allocation of data in memory regions. Our coarse-grained implementation utilizes both the GPU and CPU by sharing data at the begining and end of the sort. Our fine-grained implementation utilizes the APU’s integrated memory system to share data throughout the sort. Both these implementations outperform the current state of the art GPU radix sort from NVIDIA. We therefore demonstrate that the CPU can be efficiently used to speed up radix sort on the APU. Our fine-grained implementation slightly outperforms our coarse-grained implementation. This demonstrates the benefit of the APU’s integrated architecture. This performance benefit is hindered by limitations in the APU’s architecture and programming model. We believe that the performance benefits will increase once these limitations are addressed in future generations of the APU.
3

Heterogeneity-Aware Operator Placement in Column-Store DBMS

Karnagel, Tomas, Habich, Dirk, Schlegel, Benjamin, Lehner, Wolfgang 02 February 2023 (has links)
Due to the tremendous increase in the amount of data efficiently managed by current database systems, optimization is still one of the most challenging issues in database research. Today’s query optimizer determine the most efficient composition of physical operators to execute a given SQL query, whereas the underlying hardware consists of a multi-core CPU. However, hardware systems are more and more shifting towards heterogeneity, combining a multi-core CPU with various computing units, e.g., GPU or FPGA cores. In order to efficiently utilize the provided performance capability of such heterogeneous hardware, the assignment of physical operators to computing units gains importance. In this paper, we propose a heterogeneity-aware physical operator placement strategy (HOP) for in-memory columnar database systems in a heterogeneous environment. Our placement approach takes operators from the physical query execution plan as an input and assigns them to computing units using a cost model at runtime. To enable this runtime decision, our cost model uses the characteristics of the computing units, execution properties of the operators, as well as runtime data to estimate execution costs for each unit. We evaluated our approach on full TPC-H queries within a prototype database engine. As we are going to show, the placement in a heterogeneous hardware system has a high influence on query performance.

Page generated in 0.0547 seconds