• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 190
  • 84
  • 51
  • 19
  • 17
  • 10
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • Tagged with
  • 484
  • 69
  • 52
  • 49
  • 39
  • 38
  • 37
  • 36
  • 34
  • 31
  • 31
  • 29
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Measurements and Applications of Radon in South African Aquifer and River Waters.

Abdalla, Siddig Abdalla Talha. January 2009 (has links)
<p>In the natural decay series of 238U an inert radioactive gas, 222Rn (radon) is formed in the decay of 226Ra. Because radon is relatively soluble in water, it migrates from places of its generation in rocks and soils to other places either by soil air, or travels with underground water. Therefore, there is a growing interest among hydrogeologists in using radon as a natural tracer for investigating and managing fresh water reservoirs. This work is aimed at investigating and developing radon-in-water measuring techniques applicable to aquifers and rivers. A gamma-ray spectrometry method using a hyper-pure germanium (HPGe) detector, based at iThemba LABS, Cape Town and Marinelli beakers, has been optimized to measure radon in borehole water via the g-rays associated with the decay of radon daughters 214Pb and 214Bi (in secular equilibrium with their parent). An accuracy better than 5% was achieved. Moreover, long-term measurements of radon in water from an iThemba LABS borehole have been carried out to investigate the role of radon for characterizing aquifers. These investigations led to the development of a simplified physical model that reproduces the time-evolution of radon concentration with borehole pumping and may be used to estimate the time for representative sampling of the aquifer. A novel method is also proposed in this thesis to measure radon-in-water in the field after grab sampling - a so-called quasi in-situ method. The quasi in-situ method involves inserting a y-ray detector in a container of large volume filled with water of interest. The g-ray spectra are analyzed using an approach involving energy intervals on the high-energy part of the spectrum (1.3 &ndash / 3.0 MeV). Each energy interval corresponds to contributions from one of the major g-ray sources: 40K and the decay series of 238U and 232Th, and cosmic rays. It is assumed that the U interval will be dominated by g-rays emitted from the radon daughters (214Pb and 214Bi). Minor contributions to an interval with major radionuclide are corrected using an MCNPX simulated standard spectra. The two methods in this thesis make a significant contribution to measuring and modelling of radon in aquifers and surface waters. It forms a basis for further development in an interactive mode with hydrological applications.</p>
52

A radon chamber and its role in a radon survey

Jia, Di., 賈地. January 1992 (has links)
published_or_final_version / Radioisotope / Master / Master of Philosophy
53

Radon and its daughters in the Hong Kong environment

Hill, Janet Mary. January 1986 (has links)
published_or_final_version / Radioisotope Techniques / Doctoral / Doctor of Philosophy
54

Robust curvelet-domain data continuation with sparseness constraints.

Herrmann, Felix J. January 2005 (has links)
A robust data interpolation method using curvelets frames is presented. The advantage of this method is that curvelets arguably provide an optimal sparse representation for solutions of wave equations with smooth coefficients. As such curvelets frames circumvent - besides the assumption of caustic-free data - the necessity to make parametric assumptions (e.g. through linear/parabolic Radon or demigration) regarding the shape of events in seismic data. A brief sketch of the theory is provided as well as a number of examples on synthetic and real data.
55

Measurements and Applications of Radon in South African Aquifer and River Waters.

Abdalla, Siddig Abdalla Talha. January 2009 (has links)
<p>In the natural decay series of 238U an inert radioactive gas, 222Rn (radon) is formed in the decay of 226Ra. Because radon is relatively soluble in water, it migrates from places of its generation in rocks and soils to other places either by soil air, or travels with underground water. Therefore, there is a growing interest among hydrogeologists in using radon as a natural tracer for investigating and managing fresh water reservoirs. This work is aimed at investigating and developing radon-in-water measuring techniques applicable to aquifers and rivers. A gamma-ray spectrometry method using a hyper-pure germanium (HPGe) detector, based at iThemba LABS, Cape Town and Marinelli beakers, has been optimized to measure radon in borehole water via the g-rays associated with the decay of radon daughters 214Pb and 214Bi (in secular equilibrium with their parent). An accuracy better than 5% was achieved. Moreover, long-term measurements of radon in water from an iThemba LABS borehole have been carried out to investigate the role of radon for characterizing aquifers. These investigations led to the development of a simplified physical model that reproduces the time-evolution of radon concentration with borehole pumping and may be used to estimate the time for representative sampling of the aquifer. A novel method is also proposed in this thesis to measure radon-in-water in the field after grab sampling - a so-called quasi in-situ method. The quasi in-situ method involves inserting a y-ray detector in a container of large volume filled with water of interest. The g-ray spectra are analyzed using an approach involving energy intervals on the high-energy part of the spectrum (1.3 &ndash / 3.0 MeV). Each energy interval corresponds to contributions from one of the major g-ray sources: 40K and the decay series of 238U and 232Th, and cosmic rays. It is assumed that the U interval will be dominated by g-rays emitted from the radon daughters (214Pb and 214Bi). Minor contributions to an interval with major radionuclide are corrected using an MCNPX simulated standard spectra. The two methods in this thesis make a significant contribution to measuring and modelling of radon in aquifers and surface waters. It forms a basis for further development in an interactive mode with hydrological applications.</p>
56

Release of radon from showers and its influence on the balance of radon indoors

Hazin, Clovis Abrahao 08 1900 (has links)
No description available.
57

Radon as a natural geochemical tracer for study of groundwater discharge into lakes /

Schmidt, Axel. January 2008 (has links)
Zugl.: Köln, University, Diss., 2008.
58

Homeowner perception and response to radon /

Himes, Lori J., January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 70-71). Also available via the Internet.
59

Radiation exposure due to radon and gamma rays in Hong Kong /

Li, Chung-chuen. January 1991 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1992.
60

Radon adsorption on activated charcoal in the presence of indoor pollutants /

Quirino Torres, Leopoldo Leonardo, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 86-91). Also available on the Internet.

Page generated in 0.0238 seconds