• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LINE SCANNING THERMOGRAPHY FOR DETECTION OF RAIL BASE AND INTERNAL DEFECTS: A FEASIBILITY STUDY

Winn, Jackson 01 December 2022 (has links)
The railroad industry is pivotal in the United States to ensure that the supply chain does not shut down for the American people. Non-Destruction Evaluation (NDE) approaches are preferred and performed on the railways to ensure the safety of the population that is exposed to the railway industry. When damage occurs on the rail base, there is an increased risk derailment of the train cars. Due to the nature of the railroad industry, there are challenges with developing a quick and reliable inspection method, along with the improvement of current NDE methods. The load, speed, and cycles of trains have increased the load that track sections endure over time. Some railways that were originally built in the early 20th century are still utilized today, designed for trains that are not nearly as heavy or fast as used today. Defects and damage on the railways lead to the need of development of an NDE approach utilizing Line Scan Thermography approaches. One of the most common defects that are formed are on the rail base is known as “base nicks” and “half-moon cracks”, these types of defects can occur over time. This research aims to study the feasibility of applying this NDE technique to detect defects that can occur on a rail base, both internal and external. For this research, a heat source up to 6000 W and tested velocities up to 447.1 mm/s (1.0 mph) are used to study the effects of line scanning thermography on various samples. In total, 10 samples are employed to test for feasibility: each one having a unique set of defects. Some defects fabricated on these samples are internal, such as bottom drilled holes (BDH) and side drilled holes (SDH); some of these samples are fabricated from actual rail samples. From tests conducted for internal defects, it can be concluded that defects with diameters of 6.35 mm (0.25”) can be detected at a remaining thickness from the observation surface of 6.35 mm. Along with internal defects, there are also external defects employed on the samples; these defects include simulated base nicks, fractures, and half-moon cracks. For surface defects tests from this research, it is found that the anomalies can be detected visually. The results from the experimental studies provide insight and limitations of LST for the possibility of a future commercial application.
2

Defect Detection on Rail Base Area Using Infrared Thermography

Shrestha, Survesh Bahadur 01 September 2020 (has links)
This research aims to investigate the application of infrared thermography (IRT) as a method of nondestructive evaluation (NDE) for the detection of defects in the rail base area. Rails have to withstand harsh conditions during their application. Therefore, defects can develop in the base area of rails due to stresses such as bending, shear, contact, and thermal stresses, fatigue, and corrosion. Such defects can cause catastrophic failures in the rails, ultimately leading to train derailments. Rail base defects due to fatigue and corrosion are difficult to detect and currently there are no reliable or practical non-destructive evaluation (NDE) methods for finding these types of defects in the revenue service. Transportation Technology Center, Inc. (TTCI) had previously conducted a research on the capability of flash IRT to detect defects in rail base area based on simulation approach. The research covered in this thesis is the continuation of the same project.In this research, three rail samples were prepared with each containing a notched-edge, side-drilled holes (SDHs), and bottom-drilled holes (BDHs). Two steel sample blocks containing BDHs and SDHs of different sizes and depths were also prepared. Preliminary IRT trials were conducted on the steel samples to obtain an optimal IRT setup configuration. The initial inspections for one of the steel samples were outsourced to Thermal Wave Imaging (TWI) where they employed Thermographic Signal Reconstruction (TSR) technique to enhance the resulting images. Additional inspections of the steel samples were performed in the Southern Illinois University-Carbondale (SIUC) facility. In case of the rail samples, the SDHs and the notched-edge reflectors could not be detected in any of the experimental trials performed in this research. In addition, two more rail samples containing BDHs were prepared to investigate the detection capabilities for three different surface conditions: painted, unpainted, and rusted. The painted surface provided a best-case scenario for inspections while the other conditions offered further insight on correlating the application to industry-like cases.A 1300 W halogen lamp was employed as the heat source for providing continuous thermal excitation for various durations. Post-processing and analysis of the resulting thermal images was performed within the acquisition software using built-in analysis tools such as temperature probes, Region of Interest (ROI) based intensity profiles, and smoothing filters. The minimum defect diameter to depth (aspect) ratio detected in preliminary trials for the steel sample blocks were 1.0 at a diameter of 4.7625 mm (0.1875 in) and 1.5 at a diameter of 3.175 mm (0.125 in). For the inspection of painted rail sample, the longest exposure times (10 sec) provided the best detection capabilities in all sets of trials. The three holes having aspect ratio greater or equal to 1.0 were indicated in the thermal response of the painted and rusted samples while only the two holes having aspect ratio greater or equal to 1.5 were indicated in the unaltered sample. Indications of reflectors were identified through qualitative graphical analysis of pixel intensity distributions obtained along a bending line profile. The results obtained from the painted sample provided a baseline for analyzing the results from the unpainted and rusted rail samples. This provided an insight on the limitations and requirements for future development. The primary takeaway is the need for an optimized heat source. Poor contrast in the resulting image for the unpainted and rusted rail samples is experienced due to both noise and lack of penetration of the heat energy. This could have been due to decreased emissivity values. Moreover, the excitation method employed in this research does not comply with current industry standards for track clearances. Therefore, exploration of alternative excitation methods is recommended.

Page generated in 0.0652 seconds