• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 279
  • 30
  • 23
  • 23
  • 23
  • 23
  • 23
  • 22
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 378
  • 378
  • 72
  • 69
  • 55
  • 45
  • 43
  • 43
  • 41
  • 40
  • 39
  • 36
  • 34
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Throughfall Dynamics and Canopy Processes in a Nitrogen Fertilized Forest

Gaige, Elizabeth January 2005 (has links) (PDF)
No description available.
232

Hail in the Transvaal : some geographical and climatological aspects

Olivier, Jana 10 June 2014 (has links)
M.Sc. (Geography) / Hailstorms are well-known phenomena in the summer rainfall region of southern Africa where they cause extensive damage - especially in the agricultural sector. This thesis examines the geography and climatology of hail in the Transvaal. It deals with three main issues, namely a) the spatial and temporal characteristics of hail days (HDs); b) rainfall and atmospheric conditions prevailing during hail events; and c) the geography of hail damage as it pertains to maize. In the Transvaal, hail day frequency (HDF) increases with altitude and latitude in a non-linear (exponential) manner. Variations in altitude, as reflected in the diverse physiography of the area, account for most of the spatial and temporal variations in hail occurrence. Seven hail regions can be distinguished which differ from one another in terms of the onset times of hail, its seasonal occurrence and annual HDF patterns. In general, most hailstorms occur during November with the peak onset time varying between 16:00 and 20:00. The most notable finding concerning rain - hail interrelationships, is that rainfall and HDF appear to be inversely related, years/months with high hail incidence being dry and vice versa. Daily and seasonal precipitation characteristics also differ between 'high hail years' (HHYs; dry) and 'low hail years' (LHYs; wet). For instance, during HHYs, the peak hail season is delayed while the rain season peaks earlier. Moreover, while the frequency of convective systems remains nearly the same during HHYs as in 'normal' years, the average precipitation area and the volumetric production decreases significantly. These anomalies appear to be the result of changes in the large-scale circulation patterns (as reflected by the transition from baroclinic to quasi-barotropic conditions) which influence the precipitation from mesoscale convective systems. It is likely that the Southern Oscillation plays a role in these changes, particularly during November and December. However, although these Southern Oscillation Index (SOl) - HDF associations are weak, they are appreciably stronger than those between the SOl and rainfall. Rainfall characteristics on HDs differ from those of non-hail rain days in that, on HDs, more rain falls and the rain-bearing systems are more extensive. In general, atmospheric conditions are less stable, and the humidity level is higher, on HDs than on other days. Furthermore, HDs are characterized by warm north easterly winds near the surface but cold, dry south westerlies at the 600 hPa level. Above this the south westerlies become progressively stronger
233

The relationship between daily and monthly pan evaporation and rainfall totals in Southern Africa

Watkins, Deidre Ann January 1994 (has links)
Recent droughts in South Africa have highlighted the vulnerability of the economy to water restrictions. However, the degree of surface aridity in southern Africa is not only a function of precipitation, but also one of evaporation. The quantitative assessment of evaporative loss is important since it is a major component of the water budget. For example, in southern Africa, evaporation accounts for 79.5% of the hydrological water budget. As the cost of water resource development increases, so there has been an increasing demand for hydrological modelling to optimise project planning. Reliable estimates of evaporation are essential to significant improvements in the practice of hydrology and particularly in a country like South Africa which is prone to the adverse effects of drought. It is difficult to adequately measure potential evaporation over an area as large and as sparsely populated as southern Africa. Despite the research that has been undertaken to estimate evaporation from related meteorological and physical variables, generally, the estimation of evaporation in southern Africa has been unsatisfactory. There are a number of methods for estimating potential evaporation. However, a major problem tends to be the incompatibility between the data requirements of some of the more physically-based models, and the actual data that is available and collected on a routine basis at a sufficient number of stations. In existing water resources estimation models, evaporation is often incorporated as a time series input of pan evaporation, using daily or monthly values. The lack of a nearby record of pan evaporation often necessitates the use of published regionalised mean monthly pan values. This technique of using the mean monthly evaporation values in water resources estimation models tends to overestimate or underestimate the actual evaporation that is occurring, depending on the actual amount of rain occurring in a specific month. This is because no attempt has been made to correct these mean evaporation values for the amount of rainfall that occurs in a specific month, in a specific region. The regional rainfall/evaporation relationships (that vary spatially and temporally) are not taken into account. A need was identified for an assessment of the value of grouping data by rainfall as a better tool for estimating evaporation. Here, the monthly evaporation and the mean monthly evaporation for a specific rainfall group category will be estimated using daily data. Due to data availability, the most appropriate time scale to use is one day. Therefore, in this study an attempt has been made to relate rainfall amounts to evaporation values and to develop rainfall/evaporation relationships, identifying variations by season and region. It is important to identify and quantify these relationships and assess the possibility of incorporating these variations into existing Water Resource Estimation Models. The ability to derive and develop meaningful relationships between daily rainfall and daily evaporation for each season, and for a number of sites considered representative of the climatological zones for southern Africa was assessed. The first approach was to compare daily evaporation plotted against daily rainfall, and in the process develop a quantitative rainfall/evaporation relationship. Unfortunately, no direct linear relationships were identified. The second approach was to test the performance of the water resource estimation model using the following possible choices, (i) a real daily input (COREVAP1) - here the estimated monthly evaporation is the sum of the product number of days within each month * mean daily evaporation for each specified raingroup category, (ii) a distributed mean monthly input (COREVAP2) - here evaporation is estimated using a random sampling procedure to draw samples from a restricted part of the daily evaporation distribution for each raingroup and is defined by the mean and standard deviation, and (iii) a distributed mean monthly input and correction (COREVAP3) - here samples are drawn from the full distribution of daily evaporation for each raingroup category. The performance of the COREVAP programs was analyzed in terms of the improvement effected by estimating evaporation using the mean monthly evaporation regardless of rain. COREVAP1 produced the best simulations of monthly evaporation. This was expected as the program uses the straight-forward mean evaporation value multiplied by the number of days to simulate the monthly evaporation values. However, the COREVAP programs did not perform well when using the monthly evaporation data based on daily infilled values using the transformed parameters. Any regionalisation of parameter files would mean that a range of parameters in a region would now be represented by a single value. The need to assess the effect of this change from a regional range of values to a single representative value was identified. This was done by conducting a sensitivity analysis, in terms of what effect a percentage increase or decrease in the lambda, mean evaporation and mean rainfall values would have on the resultant simulated monthly evaporation and coefficient of efficiency values. A sensitivity analysis was conducted on COREVAP1 to determine which parameters of the model had the greatest influence on the simulations. This was done with reference to the percentage error of monthly evaporation and the monthly and accumulative coefficient of efficiency values. Generally, the percentage increase/decrease in mean evaporation values that are acceptable for the representative stations are low. In contrast, fairly high percentage changes in mean rainfall values are tolerated. The objective of the regionalisation of parameters was to determine whether general characteristics can be applied to some stations that are significantly different compared to other stations, so that the stations may be combined to represent a separate region. The demarcation of regions was conducted on the basis of the regional relative mean evaporation values (per raingroup, per season), the daily mean evaporation values per month and the average number of days within each raingroup, per season. Intra-station and inter-region variability was analysed using the Kruskal-Wallis H test and the Friedman Fr test. The regional parameters were then used as input into the COREVAP programs and the simulation results were analysed in terms of whether the simulations still produce positive accumulative coefficient of efficiency values. The results obtained when substituting the regional parameters were not good. Based on these results, it has been concluded that the hypothesis that grouping data by rainfall may be a better tool for estimating evaporation compared to simply using the mean monthly evaporation, may be rejected.
234

CALCULATION AND COMPARISON OF THE FLOOD RISK POTENTIAL DUE TO RAINFALL EVENTS AND SNOW MELT USING TECHNIQUES DEVELOPED FOR FLOOD RISK IN FLORIDA

Unknown Date (has links)
CASCADE 2001 is a multi-basin flood routing program used in areas of flat terrain. CASCADE was used for different situational elements including the Florida Keys, Broward County, and Pensacola. The goal for this screening tool was to create flood inundation watershed mapping for the Florida Division of Emergency Management (FDEM). After showing the risks of flooding that could occur in Florida, the thought of how useful CASCADE can be in other environmental conditions. The Rocky Mountains were selected to show the effect of flood inundation that can be mirrored in an opposite condition from prior experimentation. We chose to test this program in an area with mountainous terrain like the region of Grand Lake, Colorado. Rainfall, in collaboration with groundwater tables, ground soil storage and topography have the most effect on the CASCADE modeling program. Effects that were not used in the Florida models but added for Grand Lake included snowmelt. Snowmelt in the Rocky Mountains affects the flow of the Colorado River causing excess discharge that flows throughout the valleys and into Shadow Mountain Lake. WINSRM was a recommended model that could be used to simulate snowmelt during different months of Colorado’s spring season. The effects of snowmelt and rainfall flooding can be compared in relation to each other. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
235

An analysis of the temporal and spatial variability of the rainfall and runoff regimes of drainage basins in Trinidad /

Dupigny, Lesley-Ann January 1991 (has links)
No description available.
236

Use of short-term stations to estimate rainfall

Veerasamy, S. (Shyamnath) January 1984 (has links)
No description available.
237

The use of weather radar for measuring and forecasting rainfall over watersheds.

Damant, Christine. January 1981 (has links)
No description available.
238

Extreme Precipitation over the Asian Summer Monsoon Region – A Process-Oriented Perspective and the Role of Anthropogenic Forcings

You, Yujia January 2023 (has links)
Asia, one of the most densely populated regions in the world, receives 50%-80% of annual rainfall during the summer monsoon season. While agricultural yield and water resource over this region benefit greatly from the summer rainfall, human lives and infrastructures are, at the same time, threatened by the frequently occurring heavy downpour. Although large efforts have been devoted to delineate the characteristics and variations of Asian monsoon extreme rainfall, its dynamical triggers and the physical mechanisms underlying the past and future changes remain poorly understood. To address the knowledge gap, this thesis aims to provide a process-oriented perspective on monsoon rainfall extremes with special attention given to the heavy-rain producing weather systems, namely the monsoon low-pressure systems (LPSs). In Chapter 1, an objective feature-tracking algorithm is adopted to compile the observed trajectories of monsoon LPSs over the East Asia monsoon region during the post-1979 satellite era. Two types of LPS are identified. One forms near the downwind side of the Tibetan Plateau (i.e., southwestern China) and travels northeastward toward north-central China. The other forms over the western North Pacific Ocean and migrates along the southern and western peripheries of the subtropical high. The two types of LPS together account for approximately half of the rainfall extremes. The terrestrial LPSs are responsible for a great majority of extreme rainfall over inland areas, whereas the influences of marine LPSs are primarily confined to the coastal regions where they frequently make landfall. The observed long-term change in extreme rainfall, featured by a “south flood-north drought” pattern, aligns well with the change in LPS activity. The decreasing number of northeastward-moving terrestrial LPSs leads to an extreme rainfall dipole with negative trends in north-central China and positive trends in southern China, while the increasing number of northward-recurving marine LPSs enhances the extreme rainfall along the southeastern China coast. These trends are driven by the weakening of the monsoonal southwesterlies and the eastward retreat of the subtropical high. Despite the great importance of terrestrial LPSs in modulating extreme rainfall over East Asia, these storms have so far received limited attention in research community because of the lack of a track archive. Chapter 2 further investigates the dynamical processes fueling the different evolution regimes of individual terrestrial LPSs and explores the environmental factors controlling their evolution. Chapters 3 and 4 concentrate on the South Asian monsoon region, where the long-term trend of LPS activity remains debatable owing to the potential errors arising from the manual and subjective identification of LPSs from weather charts. Using two different tracking algorithms, in Chapter 3 we find that the trends of extreme rainfall and LPS activity indeed exhibit a strong coherence. Over time, the LPSs propagate preferentially through south-central India rather than north-central India, imparting a corresponding dipole footprint in rainfall extremes. In agreement with previous studies that the LPS propagation is a combined effect of the northwestward-propagating component due to horizontal nonlinear adiabatic advection and the southwestward-propagating component due to diabatic heating, the LPSs traveling through south-central India have stronger updrafts on their west-southwestern flank than those passing through north-central India. The increased frequency of LPSs propagating through south-central India is likely due to a strengthened cross-equatorial moisture transport over the Arabian Sea, which favors more vigorous storm convection through the conditional instability of second kind mechanism. Chapter 4 then focuses specifically on the role of LPS in triggering the record-breaking Pakistan flood during summer 2022, when most of the South Asian LPSs were able to propagate into Pakistan with intensity and longevity far exceeding historical records. The abnormal LPS activity was fueled by a historically-high cross-equatorial moisture transport, which is in agreement with the fingerprint of anthropogenic warming in the Coupled Model Intercomparison Project - Phase 6 (CMIP6) models. The last chapter of this thesis proceeds to evaluate the performance of CMIP6 models in simulating the monsoon rainfall extremes and to explore whether the performance is affected by the degree to which the models could realistically capture the LPS activity. The modelled precipitation often occurs more frequently and the extreme events are commonly less intense than in observations. A robust improvement of model performance in simulating monsoon rainfall extremes as resolution increases is seen across most models, both in terms of spatial distribution and intensity. The dry biases get improved in the regions with high exposure to monsoon LPSs, such as central India, southern China, and western North Pacific. The improvement is associated with a better representation of LPSs, which become more frequent and stronger at finer resolution.
239

Rain Rate Retrieval Algorithm For Aquarius/sac-d Microwave Radiometer

Menzerotolo, Rosa Ana 01 January 2011 (has links)
Microwave radiometers are used to measure blackbody microwave emissions emitted by natural targets. Radiative transfer theory provides a well founded physical relationship between the atmosphere and surface geophysical parameters and the brightness temperature measured by these radiometers. The atmospheric brightness temperature is proportional to the integral of the microwave absorption of water vapor, oxygen, and liquid water between the top of the atmosphere and the surface. Inverse radiative transfer models use to retrieve the water vapor, cloud liquid and oxygen content in the atmosphere are very well known; however, the retrieval of rain rate in the atmosphere is still a challenge. This project presents a theoretical basis for the rain rate retrieval algorithm, which will be implemented in the Aquarius/SAC-D Microwave Radiometer (MWR). This algorithm was developed based on the radiative transfer model theory for a single layer atmosphere using four WindSat channels. Transmissivity due to liquid water (rain and cloud liquid water) is retrieved from the four channel brightness temperatures, and a statistical regression is performed to relate the rain rate, rain physical temperature and rain height to the liquid water transmissivities at 24 GHz and 37 GHz. Empirical validation results are presented using the WindSat radiometer observations.
240

Effects of stemflow water on soil formation under beech trees /

Gersper, Paul Logan January 1968 (has links)
No description available.

Page generated in 0.0736 seconds