Spelling suggestions: "subject:"rainbow connection"" "subject:"rainbow aconnection""
1 |
Rainbow Disconnection in GraphsChartrand, Gary, Devereaux, Stephen, Haynes, Teresa W., Hedetniemi, Stephen T., Zhang, Ping 01 January 2018 (has links)
Let G be a nontrivial connected, edge-colored graph. An edge-cut R of G is called a rainbow cut if no two edges in R are colored the same. An edge-coloring of G is a rainbow disconnection coloring if for every two distinct vertices u and v of G, there exists a rainbow cut in G, where u and v belong to different components of G − R. We introduce and study the rainbow disconnection number rd(G) of G, which is defined as the minimum number of colors required of a rainbow disconnection coloring of G. It is shown that the rainbow disconnection number of a nontrivial connected graph G equals the maximum rainbow disconnection number among the blocks of G. It is also shown that for a nontrivial connected graph G of order n, rd(G) = n−1 if and only if G contains at least two vertices of degree n − 1. The rainbow disconnection numbers of all grids Pm Pn are determined. Furthermore, it is shown for integers k and n with 1 ≤ k ≤ n − 1 that the minimum size of a connected graph of order n having rainbow disconnection number k is n + k − 2. Other results and a conjecture are also presented.
|
2 |
Rainbow Colouring and Some Dimensional Problems in Graph TheoryRajendraprasad, Deepak January 2013 (has links) (PDF)
This thesis touches three different topics in graph theory, namely, rainbow colouring, product dimension and boxicity.
Rainbow colouring An edge colouring of a graph is called a rainbow colouring, if every pair of vertices is connected by atleast one path in which no two edges are coloured the same. The rainbow connection number of a graph is the minimum number of colours required to rainbow colour it. In this thesis we give upper bounds on rainbow connection number based on graph invariants like minimum degree, vertex connectivity, and radius. We also give some computational complexity results for special graph classes.
Product dimension The product dimension or Prague dimension of a graph G is the smallest natural number k such that G is an induced subgraph of a direct product of k complete graphs. In this thesis, we give upper bounds on the product dimension for forests, bounded tree width graphs and graphs of bounded degeneracy.
Boxicity and cubicity The boxicity (cubicity of a graph G is the smallest natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes(axis-parallel unit cubes) in Rk .In this thesis, we study the boxicity and the cubicity of Cartesian, strong and direct products of graphs and give estimates on the boxicity and the cubicity of a product graph based on invariants of the component graphs.
Separation dimension The separation dimension of a hypergraph H is the smallest natural number k for which the vertices of H can be embedded in Rk such that any two disjoint edges of H can be separated by a hyper plane normal to one of the axes. While studying the boxicity of line graphs, we noticed that a box representation of the line graph of a hypergraph has a nice geometric interpretation. Hence we introduced this new parameter and did an extensive study of the same.
|
3 |
Rainbow Connection Number Of Graph Power And Graph ProductsArunselvan, R 11 1900 (has links) (PDF)
The minimum number of colors required to color the edges of a graph so that any two distinct vertices are connected by at least one path in which no two edges are colored the same is called its rainbow connection number. This graph parameter was introduced by Chartrand et al. in 2008. The problem has garnered considerable interest and several variants of the initial version have since been introduced. The rainbow connection number of a connected graph G is denoted by rc(G). It can be shown that the rainbow connection number of a tree on n vertices is n -1. Hence |G|-1 is an upper bound for rc(G)of any non-trivial graph G. For all non-trivial, bridge-less and connected graphs G, Basavaraju etal. Showed that rc(G) can be upper-bounded by a quadratic function of its radius. In addition they also proved the tightness of the bound. It is clear that we cannot hope to get an upper-bound better than |G| - 1 in the case of graphs with bridges. An immediate and natural question is the following: Are there classes of bridge-less graphs whose rainbow connection numbers are linear functions of their radii? This question is of particular interest since the diameter is a trivial lower bound for rc(G). We answer in affirmative to the above question. In particular we studied three (graph) product operations (Cartesian, Lexicographic and Strong) and the graph powering operation. We were able to show that the rainbow connection number of the graph resulting from any of the above graph operations is upper-bounded by 2r(G)+c, where r(G) is radius of the resultant graph and c ε {0, 1, 2}.
|
Page generated in 0.0537 seconds