• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Congener-specific disposition of polychlorinated biphenyls in rainbow trout

Foster, Eugene P. 08 March 1996 (has links)
Graduation date: 1996
2

Effect of xenoestrogen exposure on the expression of cytochrome P450 isoforms in rainbow trout liver

Intharapanith, Sirinmas 12 December 1995 (has links)
Graduation date: 1996
3

Bioaccumulation of dietary 2,2',4,4',5,5'-hexachlorobiphenyl and induction of hepatic aryl hydrocarbon hydroxylase in rainbow trout (oncorhynchus mykiss)

da Costa, Emmanuel G. 20 July 1994 (has links)
Graduation date: 1995
4

Assessing mechanisms of immunotoxicity for polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss)

Bravo, Claudia F. 09 December 2005 (has links)
During the past 30 years, numerous studies have focused on the toxicities of polycyclic aromatic hydrocarbons (PAH). Laboratory and field studies have helped elucidate the detrimental effects of these chemicals on growth, reproduction and immune response. Polycyclic aromatic hydrocarbons are in the priority list of chemicals to be studied by different governmental agencies and universities and understanding their mechanisms of action is the focus of the current research. The manuscripts presented in this dissertation are focused on the effects and mechanism of action of PAH on disease susceptibility. After a dietary exposure to PAH for up to 50 days (chapter II) and samplings after 3, 7, 14, 28 and 50 days, a number of biomarkers of PAH exposure were measured: Fluorescent aromatic compounds (FACs) in bile, ethoxyresorufin-o-deethylase (EROD) in liver microsomes, cytochrome P450 1A immunohistochemistry in liver and kidney and adduct formation in liver. Additionally markers of oxidative stress were measured: comet assay in blood, protein nitration in kidney and F2-isoprostanes in kidney. Oxidative stress was a probable factor in PAH induced responses in fish adapted to long-term PAH exposures and aryl hydrocarbon activation was not necessarily involved in this process. Disease challenge with Aeromonas salmonicida (chapter III) resulted in differences in mortalities that demonstrated that fish exposed to PAH were more susceptible to disease than fish not exposed to PAH. Determination of gene expression in head kidney of fish exposed and not exposed to PAH challenged with A. salmonicida using microarray and RT-PCR technologies 2, 4, 10 and 20 days after challenge (chapter IV), suggested that PAH exposure was associated with down regulation of interleukin 8, transport associated protein 1, NF-kB modulator, recombination activating gene and major histocompatibility complex II two days after challenge in fish exposed to PAH. The transcript levels were closer to control levels 20 days after challenge, this indicated a recovery from the effect of PAH exposure. / Graduation date: 2006
5

The effects of triclosan, 2,4-D, and their by-products on the adrenocortical cells of rainbow trout

Dann, Andrea B January 2011 (has links)
The ubiquitous presence of anthropogenic chemicals and their transformation products in surface water represents a toxicological concern from both an ecological standpoint and a human perspective as many of these chemicals are capable of altering hormonal function. Endocrine disrupting compounds can be traced back to numerous sources and may fall under the class of pesticide, industrial chemical, pharmaceutical, personal care product, and/or heavy metals. The adrenal gland is the most common target for endocrine disruptors, although in comparison to the sex steroids, this system has received much less attention in published research. Corticosteroids play a pivotal role in many physiological processes, including immunity, cognitive function, growth, metabolism, reproduction, mineral balance, and blood pressure. A primary cell culture of rainbow trout adrenocortical cells was used to investigate the endocrine disrupting activity of two commonly detected water-borne toxicants, a personal care product, triclosan (TCS), a pesticide, dichlorophenoxyacetic acid (2,4-D), and their transformation products, methyl-triclosan (M-TCS) and dichlorophenol (DCP). Previously, it has been shown that TCS, 2,4-D, and DCP exhibit a potential for endocrine disruption, although it is currently unknown if these chemicals are capable of affecting corticosteroid balance. In this study, all four chemicals showed significant inhibitory effects on corticosteroid synthesis, even though there were considerable differences in their activity. The chemical that exhibited the highest toxicity was 2,4-D, followed by TCS, DCP, and M-TCS. Both parent-compounds proved to be more toxic than their degradation products. More research with suitable test systems is needed to determine the mechanism(s) of action of these corticosteroid disruptors and the health risk that they may present. / ix, 139 leaves : ill. ; 29 cm

Page generated in 0.109 seconds