• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling cumulus convection over the eastern escarpment of South Africa / Zane Dedekind

Dedekind, Zane January 2015 (has links)
The complex and coupled physical processes taking place in the atmosphere, ocean and land surface are described in Global Circulation Models (GCMs). These models have become the main tools to simulate climate variability and project future climate change. GCMs have the potential to give physically reliable estimates of climate change at global, continental or regional scales, but their projections are currently of too course horizontal resolution to capture the smaller scale features of climate and climate change. This situation stems from the fact that GCM simulations, which are effectively three-dimensional simulations of the coupled atmosphere-ocean-land system, are computationally extremely expensive. Therefore, downscaling techniques are utilised to do perform simulations over preselected areas that are of sufficiently detailed to represent the climate features at the meso-scale. Dynamic regional climate models (RCMs), based on the same laws of physics as GCMs but applied at high resolution over areas of interest, have become the main tools to project regional climate change. The research presented here utilises the Conformal-Cubic Atmospheric Model (CCAM), a variable-resolution global atmospheric model that can be applied in stretched-grid mode to function as a regional climate model. As is the case with RCMs, CCAM has the potential to improve climate simulations along rough topography and coastal areas when applied at high spatial resolution, whilst side-stepping the lateral boundary condition problems experienced by typical limited-area RCMs. CCAM has been developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia. The objective in the study is to test capability of a regional climate model, CCAM, to realistically simulate cumulus convection at different spatial scales over regions with steep topography, such as the eastern escarpment of South Africa. Since both GCMs and RCMs are known to have large biases and shortcomings in simulating rainfall over the steep eastern escarpment of southern Africa and in particular Lesotho, the paper “Model simulations of rainfall over southern Africa and its eastern escarpment” (Chapter 3) has a focus on verifying model performance over this region. In the paper the CCAM simulations include six 200 km resolution Atmospheric Model Intercomparison Project (AMIP) simulations that are forced with sea surface temperatures and one 50 km resolution National Centre for Environmental Prediction (NCEP) reanalysis simulation that is forced with sea surface temperatures and synoptic scale atmospheric forcings. These simulations are verified against rain gauge data sets and satellite rainfall estimates. The results reveal that at these resolutions the model is capable of simulating the key synoptic-scale features of southern African rainfall patterns. However, rainfall totals are often drastically overestimated. A key aspect of model performance is the representation of the diurnal cycle in convection. For the case of South Africa, the realistic representation of the complex patterns of rainfall over regions of steep topography is also of particular importance. At a larger spatial scale, the model also needs to be capable of representing the west-east rainfall gradient found over South Africa. The ability of CCAM to simulate the diurnal cycle in rainfall as well as the complex spatial patterns of rainfall over eastern South Africa is analysed in “High Resolution Rainfall Modelling over the Eastern Escarpment of South Africa” (Chapter 4). The simulations described in the paper have been performed at 8km resolutions in the horizontal and span a thirty-year long period. These are the highest resolution climate simulations obtained to date for the southern African region, and were obtained through the downscaling reanalysis data of the European Centre for Medium-range Weather Forecasting (ECMWF). The simulations provide a test of the robustness of the CCAM convective rainfall parameterisations when applied at high spatial resolution, in particular in representing the complex rainfall patterns of the eastern escarpment of South Africa. / M (Geography and Environmental Management), North-West University, Potchefstroom Campus, 2015
2

Modelling cumulus convection over the eastern escarpment of South Africa / Zane Dedekind

Dedekind, Zane January 2015 (has links)
The complex and coupled physical processes taking place in the atmosphere, ocean and land surface are described in Global Circulation Models (GCMs). These models have become the main tools to simulate climate variability and project future climate change. GCMs have the potential to give physically reliable estimates of climate change at global, continental or regional scales, but their projections are currently of too course horizontal resolution to capture the smaller scale features of climate and climate change. This situation stems from the fact that GCM simulations, which are effectively three-dimensional simulations of the coupled atmosphere-ocean-land system, are computationally extremely expensive. Therefore, downscaling techniques are utilised to do perform simulations over preselected areas that are of sufficiently detailed to represent the climate features at the meso-scale. Dynamic regional climate models (RCMs), based on the same laws of physics as GCMs but applied at high resolution over areas of interest, have become the main tools to project regional climate change. The research presented here utilises the Conformal-Cubic Atmospheric Model (CCAM), a variable-resolution global atmospheric model that can be applied in stretched-grid mode to function as a regional climate model. As is the case with RCMs, CCAM has the potential to improve climate simulations along rough topography and coastal areas when applied at high spatial resolution, whilst side-stepping the lateral boundary condition problems experienced by typical limited-area RCMs. CCAM has been developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia. The objective in the study is to test capability of a regional climate model, CCAM, to realistically simulate cumulus convection at different spatial scales over regions with steep topography, such as the eastern escarpment of South Africa. Since both GCMs and RCMs are known to have large biases and shortcomings in simulating rainfall over the steep eastern escarpment of southern Africa and in particular Lesotho, the paper “Model simulations of rainfall over southern Africa and its eastern escarpment” (Chapter 3) has a focus on verifying model performance over this region. In the paper the CCAM simulations include six 200 km resolution Atmospheric Model Intercomparison Project (AMIP) simulations that are forced with sea surface temperatures and one 50 km resolution National Centre for Environmental Prediction (NCEP) reanalysis simulation that is forced with sea surface temperatures and synoptic scale atmospheric forcings. These simulations are verified against rain gauge data sets and satellite rainfall estimates. The results reveal that at these resolutions the model is capable of simulating the key synoptic-scale features of southern African rainfall patterns. However, rainfall totals are often drastically overestimated. A key aspect of model performance is the representation of the diurnal cycle in convection. For the case of South Africa, the realistic representation of the complex patterns of rainfall over regions of steep topography is also of particular importance. At a larger spatial scale, the model also needs to be capable of representing the west-east rainfall gradient found over South Africa. The ability of CCAM to simulate the diurnal cycle in rainfall as well as the complex spatial patterns of rainfall over eastern South Africa is analysed in “High Resolution Rainfall Modelling over the Eastern Escarpment of South Africa” (Chapter 4). The simulations described in the paper have been performed at 8km resolutions in the horizontal and span a thirty-year long period. These are the highest resolution climate simulations obtained to date for the southern African region, and were obtained through the downscaling reanalysis data of the European Centre for Medium-range Weather Forecasting (ECMWF). The simulations provide a test of the robustness of the CCAM convective rainfall parameterisations when applied at high spatial resolution, in particular in representing the complex rainfall patterns of the eastern escarpment of South Africa. / M (Geography and Environmental Management), North-West University, Potchefstroom Campus, 2015
3

Termite responses to long term burning regimes in southern African savannas : patterns, processes and conservation

Davies, Andrew Byron 21 June 2010 (has links)
Termites are considered to be major ecosystem engineers in tropical and sub-tropical environments, and fire in savanna systems is regarded as a major and necessary disturbance for the maintenance of biodiversity. However, most fire ecology studies have focused on vegetation dynamics with little attention given to other taxa, especially invertebrates. This thesis has addressed several aspects of savanna termite ecology. First, based on a review of studies examining the relationship between fire ecology and termites, I found that few broad conclusions can be made based on the published literature. Hence little is known on the interactions between termites and ecological processes such as fire. Leading on from this, several recommendations are provided in the thesis for future research to improve ecological understanding of savannas and the dynamics that structure these systems. Second, savanna termite responses to long-term burning regimes were investigated across four distinct savanna types along a rainfall gradient in South Africa using comprehensive sampling protocols. This was achieved using experimental burning plots which have been in place in the Kruger National Park (KNP) since 1954 as well as sites in Hluhluwe-iMfolozi Park. Termite communities were found to differ significantly between these savannas with higher diversity at Pretoriuskop, a mesic savanna but not the wettest. Termite diversity was lowest at the most arid site (Mopani) but certain feeding groups peaked at Satara, a savanna with intermediate rainfall. Differences between these savannas are attributed to broad underlying changes in net primary productivity, temperature and soil type, with the role of mammalian herbivores also being considered. Seasonality was also examined and it was found that termite activity peaks in the wet and transitional seasons and is significantly lower in the dry season. Considering different fire regimes, termites, in general, were found to be highly resistant to burning, but assemblage composition was affected, this being more pronounced at the mesic savanna where fire has more effect on vegetation. These assemblage changes are linked to changes in vegetation structure caused by fire. Finally, termite ecology is often constrained by sampling difficulties and a lack of sampling protocols in savannas. A comparison of two often used sampling methods, baiting and active searching, was conducted across the savanna types studied. The efficiency of sampling method varied along the rainfall gradient and a single method was not the best for all savanna types. In mesic savannas, active searching (an often neglected sampling method in savannas) was most effective at sampling termite diversity while baiting was more effective in arid savannas, although this method is biased toward wood-feeding termites from feeding group II. Baiting also provides a better measure of termite activity than active searching. I demonstrate that termite communities differ significantly with savanna habitat and their responses to long-term burning regimes differ between these habitat types. Although termite communities were found to be quite resistant to burning, the degree of resistance differed with savanna type and management policies in protected areas and elsewhere need to take this into account when formulating conservation policies. Similarly, sampling methods differ in their efficiency at different sites which needs to be considered when designing sampling protocols in order to accurately reflect the biodiversity present. / Dissertation (MSc)--University of Pretoria, 2010. / Zoology and Entomology / unrestricted

Page generated in 0.0772 seconds