Spelling suggestions: "subject:"ramsey minimal"" "subject:"ramssey minimal""
1 |
On Saturation Numbers of Ramsey-minimal GraphsDavenport, Hunter M 01 January 2018 (has links)
Dating back to the 1930's, Ramsey theory still intrigues many who study combinatorics. Roughly put, it makes the profound assertion that complete disorder is impossible. One view of this problem is in edge-colorings of complete graphs. For forbidden graphs H1,...,Hk and a graph G, we write G "arrows" (H1,...,Hk) if every k-edge-coloring of G contains a monochromatic copy of Hi in color i for some i=1,2,...,k. If c is a (red, blue)-edge-coloring of G, we say c is a bad coloring if G contains no red K3or blue K1,t under c. A graph G is (H1,...,Hk)-Ramsey-minimal if G arrows (H1,...,Hk) but no proper subgraph of G has this property. Given a family F of graphs, we say that a graph G is F-saturated if no member of F is a subgraph of G, but for any edge xy not in E(G), G + xy contains a member of F as a subgraph. Letting Rmin(K3, K1,t) be the family of (K3,K1,t)-Ramsey minimal graphs, we study the saturation number, denoted sat(n,Rmin(K3,K1,t)), which is the minimum number of edges among all Rmin(K3,K1,t)-saturated graphs on n vertices. We believe the methods and constructions developed in this thesis will be useful in studying the saturation numbers of (K4,K1,t)-saturated graphs.
|
2 |
Topics in finite graph Ramsey theoryBorgersen, Robert David 18 January 2008 (has links)
For a positive integer $r$ and graphs $F$, $G$, and $H$, the graph Ramsey arrow notation $F \longrightarrow (G)^H_r$ means that for every $r$-colouring of the subgraphs of $F$ isomorphic to $H$, there exists a subgraph $G'$ of $F$ isomorphic to $G$ such that all the subgraphs of $G'$ isomorphic to $H$ are coloured the same. Graph Ramsey theory is the study of the graph Ramsey arrow and related arrow notations for other kinds of ``graphs" (\emph{e.g.}, ordered graphs, or hypergraphs). This thesis surveys finite graph Ramsey theory, that is, when all structures are finite.
One aspect surveyed here is determining for which $G$, $H$, and $r$, there exists an $F$ such that $F \longrightarrow (G)^H_r$. The existence of such an $F$ is guaranteed when $H$ is complete, whether ``subgraph" means weak or induced, and existence results are also surveyed when $H$ is non-complete. When such an $F$ exists, other aspects are surveyed, such as determining the order of the smallest such $F$, finding such an $F$ in some restricted family of graphs, and describing the set of minimal such $F$'s. / February 2008
|
3 |
Topics in finite graph Ramsey theoryBorgersen, Robert David 18 January 2008 (has links)
For a positive integer $r$ and graphs $F$, $G$, and $H$, the graph Ramsey arrow notation $F \longrightarrow (G)^H_r$ means that for every $r$-colouring of the subgraphs of $F$ isomorphic to $H$, there exists a subgraph $G'$ of $F$ isomorphic to $G$ such that all the subgraphs of $G'$ isomorphic to $H$ are coloured the same. Graph Ramsey theory is the study of the graph Ramsey arrow and related arrow notations for other kinds of ``graphs" (\emph{e.g.}, ordered graphs, or hypergraphs). This thesis surveys finite graph Ramsey theory, that is, when all structures are finite.
One aspect surveyed here is determining for which $G$, $H$, and $r$, there exists an $F$ such that $F \longrightarrow (G)^H_r$. The existence of such an $F$ is guaranteed when $H$ is complete, whether ``subgraph" means weak or induced, and existence results are also surveyed when $H$ is non-complete. When such an $F$ exists, other aspects are surveyed, such as determining the order of the smallest such $F$, finding such an $F$ in some restricted family of graphs, and describing the set of minimal such $F$'s.
|
4 |
Topics in finite graph Ramsey theoryBorgersen, Robert David 18 January 2008 (has links)
For a positive integer $r$ and graphs $F$, $G$, and $H$, the graph Ramsey arrow notation $F \longrightarrow (G)^H_r$ means that for every $r$-colouring of the subgraphs of $F$ isomorphic to $H$, there exists a subgraph $G'$ of $F$ isomorphic to $G$ such that all the subgraphs of $G'$ isomorphic to $H$ are coloured the same. Graph Ramsey theory is the study of the graph Ramsey arrow and related arrow notations for other kinds of ``graphs" (\emph{e.g.}, ordered graphs, or hypergraphs). This thesis surveys finite graph Ramsey theory, that is, when all structures are finite.
One aspect surveyed here is determining for which $G$, $H$, and $r$, there exists an $F$ such that $F \longrightarrow (G)^H_r$. The existence of such an $F$ is guaranteed when $H$ is complete, whether ``subgraph" means weak or induced, and existence results are also surveyed when $H$ is non-complete. When such an $F$ exists, other aspects are surveyed, such as determining the order of the smallest such $F$, finding such an $F$ in some restricted family of graphs, and describing the set of minimal such $F$'s.
|
Page generated in 0.0475 seconds