Spelling suggestions: "subject:"aan toace"" "subject:"aan soane""
1 |
Algèbres à factorisation et Topos supérieurs exponentiables / Factorisation Algebra and Exponentiable Higher ToposesLejay, Damien 23 September 2016 (has links)
Cette these est composee de deux parties independantes ayant pour point commun l’utilisation intensive de la theorie des ∞-categories. Dans la premiere, on s’interesse aux liens entre deux approches differentes de la formalisation de la physique des particules : les algebres vertex et les algebres a factorisation a la Costello. On montre en particulier que dans le cas des theories dites topologiques, elles sont equivalentes. Plus precisement, on montre que les∞-categories de fibres vectoriels factorisant non-unitaires sur une variete algebrique complexe lisse X est equivalente a l’∞-categorie des EM-algebres non-unitaires et de dimension finie, ou M est la variete topologique associee a X. Dans la seconde, avec Mathieu Anel, nous etudions la caracterisation de l’exponentiabilite dans l’∞-categorie des ∞-topos. Nous montrons que les ∞-topos exponentiables sont ceux dont l’∞-categorie de faisceaux est continue. Une consequence notable est que l’∞-categorie des faisceaux en spectres sur un ∞-topos exponentiable est un objet dualisable de l’∞-categorie des ∞-categories cocompletes stables munie de son produit tensoriel. Ce chapitre contient aussi une construction des ∞-coends a partir de la theorie du produit tensoriel d’∞- categories cocompletes, ainsi qu’une description des ∞-categories de faisceaux sur un ∞-topos exponentiable en termes de faisceaux de Leray. / This thesis is made of two independent parts, both relying heavily on the theory of ∞-categories. In the first chapter, we approach two different ways to formalize modern particle physics, through the theory of vertex algebras and the theory of factorisation algebras a la Costello. We show in particular that in the case of ‘topological field theories’, they are equivalent. More precisely, we show that the ∞-category of non-unital factorization vector bundles on a smooth complex variety X is equivalent to the ∞-category of non-unital finite dimensional EM-algebras where M is the topological manifold associated to X. In the second one, with Mathieu Anel, we study a characterization of exponentiable objects of the∞-category of∞-toposes.We show that an ∞-topos is exponentiable if and only if its ∞-category of sheaves of spaces is continuous. An important consequence is the fact that the ∞-category of sheaves of spectra on an exponentiable ∞-topos is a dualisable object of the ∞-category of cocontinuous stable ∞-categories endowed with its usual tensor product. This chapter also includes a ix construction of∞-coends from the theory of tensor products of cocomplete∞- categories, together with a description of∞-categories of sheaves on exponentiable ∞-toposes in terms of Leray sheaves.
|
Page generated in 0.0613 seconds