• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2196
  • 363
  • 282
  • 175
  • 98
  • 72
  • 38
  • 35
  • 34
  • 25
  • 24
  • 21
  • 21
  • 20
  • 20
  • Tagged with
  • 4011
  • 524
  • 471
  • 466
  • 425
  • 424
  • 417
  • 402
  • 381
  • 362
  • 337
  • 315
  • 288
  • 283
  • 279
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Guided random-walk based model checking

Bui, Hoai Thang, Computer Science & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
The ever increasing use of computer systems in society brings emergent challenges to companies and system designers. The reliability of software and hardware can be financially critical, and lives can depend on it. The growth in size and complexity of software, and increasing concurrency, compounds the problem. The potential for errors is greater than ever before, and the stakes are higher than ever before. Formal methods, particularly model checking, is an approach that attempts to prove mathematically that a model of the behaviour of a product is correct with respect to certain properties. Certain errors can therefore be proven never to occur in the model. This approach has tremendous potential in system development to provide guarantees of correctness. Unfortunately, in practice, model checking cannot handle the enormous sizes of the models of real-world systems. The reason is that the approach requires an exhaustive search of the model to be conducted. While there are exceptions, in general model checkers are said not to scale well. In this thesis, we deal with this scaling issue by using a guiding technique that avoids searching areas of the model, which are unlikely to contain errors. This technique is based on a process of model abstraction in which a new, much smaller model is generated that retains certain important model information but discards the rest. This new model is called a heuristic. While model checking using a heuristic as a guide can be extremely effective, in the worst case (when the guide is of no help), it performs the same as exhaustive search, and hence it also does not scale well in all cases. A second technique is employed to deal with the scaling issue. This technique is based on the concept of random walks. A random walk is simply a `walk' through the model of the system, carried out by selecting states in the model randomly. Such a walk may encounter an error, or it may not. It is a non-exhaustive technique in the sense that only a manageable number of walks are carried out before the search is terminated. This technique cannot replace the conventional model checking as it can never guarantee the correctness of a model. It can however, be a very useful debugging tool because it scales well. From this point of view, it relieves the system designer from the difficult task of dealing with the problem of size in model checking. Using random walks, the effort goes instead into looking for errors. The effectiveness of model checking can be greatly enhanced if the above two techniques are combined: a random walk is used to search for errors, but the walk is guided by a heuristic. This in a nutshell is the focus of this work. We should emphasise that the random walk approach uses the same formal model as model checking. Furthermore, the same heuristic technique is used to guide the random walk as a guided model checker. Together, guidance and random walks are shown in this work to result in vastly improved performance over conventional model checking. Verification has been sacrificed of course, but the new technique is able to find errors far more quickly, and deal with much larger models.
272

Guided random-walk based model checking

Bui, Hoai Thang, Computer Science & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
The ever increasing use of computer systems in society brings emergent challenges to companies and system designers. The reliability of software and hardware can be financially critical, and lives can depend on it. The growth in size and complexity of software, and increasing concurrency, compounds the problem. The potential for errors is greater than ever before, and the stakes are higher than ever before. Formal methods, particularly model checking, is an approach that attempts to prove mathematically that a model of the behaviour of a product is correct with respect to certain properties. Certain errors can therefore be proven never to occur in the model. This approach has tremendous potential in system development to provide guarantees of correctness. Unfortunately, in practice, model checking cannot handle the enormous sizes of the models of real-world systems. The reason is that the approach requires an exhaustive search of the model to be conducted. While there are exceptions, in general model checkers are said not to scale well. In this thesis, we deal with this scaling issue by using a guiding technique that avoids searching areas of the model, which are unlikely to contain errors. This technique is based on a process of model abstraction in which a new, much smaller model is generated that retains certain important model information but discards the rest. This new model is called a heuristic. While model checking using a heuristic as a guide can be extremely effective, in the worst case (when the guide is of no help), it performs the same as exhaustive search, and hence it also does not scale well in all cases. A second technique is employed to deal with the scaling issue. This technique is based on the concept of random walks. A random walk is simply a `walk' through the model of the system, carried out by selecting states in the model randomly. Such a walk may encounter an error, or it may not. It is a non-exhaustive technique in the sense that only a manageable number of walks are carried out before the search is terminated. This technique cannot replace the conventional model checking as it can never guarantee the correctness of a model. It can however, be a very useful debugging tool because it scales well. From this point of view, it relieves the system designer from the difficult task of dealing with the problem of size in model checking. Using random walks, the effort goes instead into looking for errors. The effectiveness of model checking can be greatly enhanced if the above two techniques are combined: a random walk is used to search for errors, but the walk is guided by a heuristic. This in a nutshell is the focus of this work. We should emphasise that the random walk approach uses the same formal model as model checking. Furthermore, the same heuristic technique is used to guide the random walk as a guided model checker. Together, guidance and random walks are shown in this work to result in vastly improved performance over conventional model checking. Verification has been sacrificed of course, but the new technique is able to find errors far more quickly, and deal with much larger models.
273

Guided random-walk based model checking

Bui, Hoai Thang, Computer Science & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
The ever increasing use of computer systems in society brings emergent challenges to companies and system designers. The reliability of software and hardware can be financially critical, and lives can depend on it. The growth in size and complexity of software, and increasing concurrency, compounds the problem. The potential for errors is greater than ever before, and the stakes are higher than ever before. Formal methods, particularly model checking, is an approach that attempts to prove mathematically that a model of the behaviour of a product is correct with respect to certain properties. Certain errors can therefore be proven never to occur in the model. This approach has tremendous potential in system development to provide guarantees of correctness. Unfortunately, in practice, model checking cannot handle the enormous sizes of the models of real-world systems. The reason is that the approach requires an exhaustive search of the model to be conducted. While there are exceptions, in general model checkers are said not to scale well. In this thesis, we deal with this scaling issue by using a guiding technique that avoids searching areas of the model, which are unlikely to contain errors. This technique is based on a process of model abstraction in which a new, much smaller model is generated that retains certain important model information but discards the rest. This new model is called a heuristic. While model checking using a heuristic as a guide can be extremely effective, in the worst case (when the guide is of no help), it performs the same as exhaustive search, and hence it also does not scale well in all cases. A second technique is employed to deal with the scaling issue. This technique is based on the concept of random walks. A random walk is simply a `walk' through the model of the system, carried out by selecting states in the model randomly. Such a walk may encounter an error, or it may not. It is a non-exhaustive technique in the sense that only a manageable number of walks are carried out before the search is terminated. This technique cannot replace the conventional model checking as it can never guarantee the correctness of a model. It can however, be a very useful debugging tool because it scales well. From this point of view, it relieves the system designer from the difficult task of dealing with the problem of size in model checking. Using random walks, the effort goes instead into looking for errors. The effectiveness of model checking can be greatly enhanced if the above two techniques are combined: a random walk is used to search for errors, but the walk is guided by a heuristic. This in a nutshell is the focus of this work. We should emphasise that the random walk approach uses the same formal model as model checking. Furthermore, the same heuristic technique is used to guide the random walk as a guided model checker. Together, guidance and random walks are shown in this work to result in vastly improved performance over conventional model checking. Verification has been sacrificed of course, but the new technique is able to find errors far more quickly, and deal with much larger models.
274

Performance analysis of active sonar classifiers

Haddad, Nicholas K. January 1990 (has links)
Thesis (Ph. D.)--Ohio University, June, 1990. / Title from PDF t.p.
275

Random walks in stochastic surroundings

Rolles, Silke Waltraud Wilhelmine, January 1900 (has links)
Proefschrift Universiteit van Amsterdam. / Met lit. opg. - Met samenvatting in het Nederlands.
276

Topology of random simplicial complexes and phase transitions for homology /

Kahle, Matthew. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 48-49).
277

On the role of non-uniform smoothness parameters and the probabilistic method in applications of the Stein-Chen method /

Weinberg, Graham Victor. January 1999 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Mathematics and Statistics, 2001. / Typescript (photocopy). Includes bibliographical references (leaves 126-128).
278

Empirical study of graph properties with particular interest towards random graphs

Weinstein, Lee, January 2005 (has links)
Thesis (B.A.)--Haverford College, Dept. of Computer Science, 2005. / Includes bibliographical references.
279

Measure-equivalence of quadratic forms /

Limmer, Douglas James. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 1999. / Typescript (photocopy). Includes bibliographical references (leaf 66). Also available on the World Wide Web.
280

Palm measure invariance and exchangeability for marked point processes

Peng, Man, Kallenberg, Olav, January 2008 (has links) (PDF)
Thesis (Ph. D.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references (p. 76-78).

Page generated in 0.0451 seconds