Spelling suggestions: "subject:"random SAT"" "subject:"fandom SAT""
1 |
ON SIMPLE BUT HARD RANDOM INSTANCES OF PROPOSITIONAL THEORIES AND LOGIC PROGRAMSNamasivayam, Gayathri 01 January 2011 (has links)
In the last decade, Answer Set Programming (ASP) and Satisfiability (SAT) have been used to solve combinatorial search problems and practical applications in which they arise. In each of these formalisms, a tool called a solver is used to solve problems. A solver takes as input a specification of the problem – a logic program in the case of ASP, and a CNF theory for SAT – and produces as output a solution to the problem. Designing fast solvers is important for the success of this general-purpose approach to solving search problems. Classes of instances that pose challenges to solvers can help in this task.
In this dissertation we create challenging yet simple benchmarks for existing solvers in ASP and SAT.We do so by providing models of simple logic programs as well as models of simple CNF theories. We then randomly generate logic programs as well as CNF theories from these models. Our experimental results show that computing answer sets of random logic programs as well as models of random CNF theories with carefully chosen parameters is hard for existing solvers.
We generate random logic programs with 2-literals, and our experiments show that it is hard for ASP solvers to obtain answer sets of purely negative and constraint-free programs, indicating the importance of these programs in the development of ASP solvers. An easy-hard-easy pattern emerges as we compute the average number of choice points generated by ASP solvers on randomly generated 2-literal programs with an increasing number of rules. We provide an explanation for the emergence of this pattern in these programs. We also theoretically study the probability of existence of an answer set for sparse and dense 2-literal programs.
We consider simple classes of mixed Horn formulas with purely positive 2- literal clauses and purely negated Horn clauses. First we consider a class of mixed Horn formulas wherein each formula has m 2-literal clauses and k-literal negated Horn clauses. We show that formulas that are generated from the phase transition region of this class are hard for complete SAT solvers. The second class of Mixed Horn Formulas we consider are obtained from completion of a certain class of random logic programs. We show the appearance of an easy-hard-easy pattern as we generate formulas from this class with increasing numbers of clauses, and that the formulas generated in the hard region can be used as benchmarks for testing incomplete SAT solvers.
|
2 |
Threshold Phenomena in Random Constraint Satisfaction ProblemsConnamacher, Harold 30 July 2008 (has links)
Despite much work over the previous decade, the Satisfiability Threshold
Conjecture remains open. Random k-SAT, for constant k >= 3,
is just one family of a large number
of constraint satisfaction problems that are conjectured to have exact
satisfiability thresholds, but for which the existence and location of these
thresholds has yet to be proven.
Of those problems for which we are able to prove
an exact satisfiability threshold, each seems to be fundamentally different
than random 3-SAT.
This thesis defines a new family of
constraint satisfaction problems with constant size
constraints and domains and which
contains problems that are NP-complete and a.s.\ have exponential
resolution complexity. All four of these properties hold for k-SAT, k >= 3,
and the
exact satisfiability threshold is not known for any constraint
satisfaction problem
that has all of these properties. For each problem in the
family defined in this
thesis, we determine
a value c such that c is an exact satisfiability threshold if a certain
multi-variable function has a unique maximum at a given point
in a bounded domain. We
also give numerical evidence that this latter condition holds.
In addition to studying the satisfiability threshold, this thesis
finds exact
thresholds for the efficient behavior of DPLL using the unit clause heuristic
and a variation of the generalized unit clause heuristic,
and this thesis proves an analog
of a conjecture on the satisfiability of (2+p)-SAT.
Besides having similar properties as k-SAT, this new family of
constraint satisfaction problems
is interesting to study in its own right because it generalizes the
XOR-SAT problem and it has close ties
to quasigroups.
|
3 |
Threshold Phenomena in Random Constraint Satisfaction ProblemsConnamacher, Harold 30 July 2008 (has links)
Despite much work over the previous decade, the Satisfiability Threshold
Conjecture remains open. Random k-SAT, for constant k >= 3,
is just one family of a large number
of constraint satisfaction problems that are conjectured to have exact
satisfiability thresholds, but for which the existence and location of these
thresholds has yet to be proven.
Of those problems for which we are able to prove
an exact satisfiability threshold, each seems to be fundamentally different
than random 3-SAT.
This thesis defines a new family of
constraint satisfaction problems with constant size
constraints and domains and which
contains problems that are NP-complete and a.s.\ have exponential
resolution complexity. All four of these properties hold for k-SAT, k >= 3,
and the
exact satisfiability threshold is not known for any constraint
satisfaction problem
that has all of these properties. For each problem in the
family defined in this
thesis, we determine
a value c such that c is an exact satisfiability threshold if a certain
multi-variable function has a unique maximum at a given point
in a bounded domain. We
also give numerical evidence that this latter condition holds.
In addition to studying the satisfiability threshold, this thesis
finds exact
thresholds for the efficient behavior of DPLL using the unit clause heuristic
and a variation of the generalized unit clause heuristic,
and this thesis proves an analog
of a conjecture on the satisfiability of (2+p)-SAT.
Besides having similar properties as k-SAT, this new family of
constraint satisfaction problems
is interesting to study in its own right because it generalizes the
XOR-SAT problem and it has close ties
to quasigroups.
|
Page generated in 0.0382 seconds