• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gasification kinetics of blends of waste tyre and typical South African coals / Chaitamwari Gurai

Gurai, Chaitamwari January 2015 (has links)
With increasing energy demand globally and, in particular, in South Africa coupled with depletion of the earth’s fossil energy resources and growing problem of disposal of nonbiodegradable waste such as waste tyres, there is a need and effort globally to find alternative energy from waste material including waste tyres. One possible way of exploiting waste tyre for energy or chemicals recovery is through gasification for the production of syngas, and this is what was investigated in this study. The possibility of gasification of waste tyre blended with coal after pyrolysis was investigated and two Bituminous coals were selected for blending with the waste tyre in co-gasification. A sample of ground waste tyre / waste tire, WT, a high vitrinite coal from the Waterberg coalfield (GG coal) and a high inertinite coal from the Highveld coalfield (SF coal) were used in this investigation. The waste tyre sample had the highest volatile matter content of 63.8%, followed by GG coal with 27% and SF coal with 23.8%. SF coal had the highest ash content of 21.6%, GG coal had 12.6% and waste tyre had the lowest of 6.6%. For the chars, SF char still had the highest ash of 24.8%, but WT char had higher ash, 14.7%, when compared to GG char with 13.9% ash. The vitrinite content in GG coal was 86.3%, whilst in SF coal it was 25% and SF coal had a higher inertinite content of 71% when compared to GG coal with 7.7%. SF char had the highest BET surface area of 126m2/g, followed by GG char with 113m2/g, and WT had the lowest value of 35.09m2/g. The alkali indices of the SF, WT and GG chars were calculated to be 8.2, 4.2 and 1.7 respectively. Coal samples were prepared by crushing and milling to particle sizes less than 75μm before charring in a packed bed balance reactor at temperatures up to 1000oC.Waste tyre samples were charred at the same conditions before milling to < 75μm particle size. Coal and WT chars were blended in ratios of 75:25, 50:50 and 25:75 before gasification experimentation. Carbon dioxide gasification was conducted on the blends and the pure coal and WT chars in a Thermogravimetric analyser (TGA) at 900oC, 925oC, 950oC and 975oC and ambient pressure. 100% CO2 was used at a flow rate of 2L/min. Reactivity of the pure char samples was found to be in the order SF > GG > WT, and the relationship between the coal chars’ reactivities could be explained by the high ash content of the SF char and low reactivity of the WT char corresponds to its low BET surface area. In general, the coal/WT char mixtures were less reactive than the respective coal, but more reactive than the pure WT char, the only exception being the 75% GG char blend which was initially more reactive than the GG char, and reactivity decreased with increasing WT content. For all samples reactivity increased with increasing temperature. The relationship between the reactivities of the GG char and its blends and that of the SF char and its blends was found to be affected by the amount of WT char added, especially at the lower temperatures 900oC and 925oC. SF coal is more reactive than GG coal, but at 900oC and 925oC, the reactivity of GG/WT blends improves in relation to the SF/WT blends with an increase in the ratio of WT in the blends, i.e. the 25% GG char blend is more reactive than the 25% SF char blend. The reactivity of the coal/WT blends was also checked against predicted conversion rates based on the conversion rates of the pure WT and coal samples. At 900oC and 925oC, the reactivities of the blends of both coal chars with WT char were found to be greater than the predicted conversion rates, and for the GG/WT blends the deviation increased with increasing WT ratios, while for the SF/WT blends the deviation increased with increasing SF ratios. These findings suggest the presence of synergism or enhancement between the coal chars and WT char in gasification reactions. The random pore model (RPM) was used to model the gasification results and it was found to adequately describe the experimental data. Activation energies determined with the RPM were found to be 205.4kJ/mol, 189.9kJ/mol and 173.9kJ/mol for SF char, WT char and GG char respectively. The activation energies of the coal/WT blends were found to be lower than those of both the pure coal and the pure WT chars. For the GG/WT blends the activation energy decreased with increasing WT char ratio, while for the SF/WT blends the activation energy decreased with increasing SF char ratio. The trends of the activation energies and conversion rates of the blends point to synergism or enhancement between the coal and WT chars in CO2 gasification reactions, and in the GG/WT blends this enhancement is driven more by the WT char, while in SF/WT blends it is driven by SF chars. It is possible that enhancement of the reactions is caused by mineral matter catalysis of the gasification reactions. The ash contents and alkali indices of the pure samples follow the order SF > WT > GG. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
2

Gasification kinetics of blends of waste tyre and typical South African coals / Chaitamwari Gurai

Gurai, Chaitamwari January 2015 (has links)
With increasing energy demand globally and, in particular, in South Africa coupled with depletion of the earth’s fossil energy resources and growing problem of disposal of nonbiodegradable waste such as waste tyres, there is a need and effort globally to find alternative energy from waste material including waste tyres. One possible way of exploiting waste tyre for energy or chemicals recovery is through gasification for the production of syngas, and this is what was investigated in this study. The possibility of gasification of waste tyre blended with coal after pyrolysis was investigated and two Bituminous coals were selected for blending with the waste tyre in co-gasification. A sample of ground waste tyre / waste tire, WT, a high vitrinite coal from the Waterberg coalfield (GG coal) and a high inertinite coal from the Highveld coalfield (SF coal) were used in this investigation. The waste tyre sample had the highest volatile matter content of 63.8%, followed by GG coal with 27% and SF coal with 23.8%. SF coal had the highest ash content of 21.6%, GG coal had 12.6% and waste tyre had the lowest of 6.6%. For the chars, SF char still had the highest ash of 24.8%, but WT char had higher ash, 14.7%, when compared to GG char with 13.9% ash. The vitrinite content in GG coal was 86.3%, whilst in SF coal it was 25% and SF coal had a higher inertinite content of 71% when compared to GG coal with 7.7%. SF char had the highest BET surface area of 126m2/g, followed by GG char with 113m2/g, and WT had the lowest value of 35.09m2/g. The alkali indices of the SF, WT and GG chars were calculated to be 8.2, 4.2 and 1.7 respectively. Coal samples were prepared by crushing and milling to particle sizes less than 75μm before charring in a packed bed balance reactor at temperatures up to 1000oC.Waste tyre samples were charred at the same conditions before milling to < 75μm particle size. Coal and WT chars were blended in ratios of 75:25, 50:50 and 25:75 before gasification experimentation. Carbon dioxide gasification was conducted on the blends and the pure coal and WT chars in a Thermogravimetric analyser (TGA) at 900oC, 925oC, 950oC and 975oC and ambient pressure. 100% CO2 was used at a flow rate of 2L/min. Reactivity of the pure char samples was found to be in the order SF > GG > WT, and the relationship between the coal chars’ reactivities could be explained by the high ash content of the SF char and low reactivity of the WT char corresponds to its low BET surface area. In general, the coal/WT char mixtures were less reactive than the respective coal, but more reactive than the pure WT char, the only exception being the 75% GG char blend which was initially more reactive than the GG char, and reactivity decreased with increasing WT content. For all samples reactivity increased with increasing temperature. The relationship between the reactivities of the GG char and its blends and that of the SF char and its blends was found to be affected by the amount of WT char added, especially at the lower temperatures 900oC and 925oC. SF coal is more reactive than GG coal, but at 900oC and 925oC, the reactivity of GG/WT blends improves in relation to the SF/WT blends with an increase in the ratio of WT in the blends, i.e. the 25% GG char blend is more reactive than the 25% SF char blend. The reactivity of the coal/WT blends was also checked against predicted conversion rates based on the conversion rates of the pure WT and coal samples. At 900oC and 925oC, the reactivities of the blends of both coal chars with WT char were found to be greater than the predicted conversion rates, and for the GG/WT blends the deviation increased with increasing WT ratios, while for the SF/WT blends the deviation increased with increasing SF ratios. These findings suggest the presence of synergism or enhancement between the coal chars and WT char in gasification reactions. The random pore model (RPM) was used to model the gasification results and it was found to adequately describe the experimental data. Activation energies determined with the RPM were found to be 205.4kJ/mol, 189.9kJ/mol and 173.9kJ/mol for SF char, WT char and GG char respectively. The activation energies of the coal/WT blends were found to be lower than those of both the pure coal and the pure WT chars. For the GG/WT blends the activation energy decreased with increasing WT char ratio, while for the SF/WT blends the activation energy decreased with increasing SF char ratio. The trends of the activation energies and conversion rates of the blends point to synergism or enhancement between the coal and WT chars in CO2 gasification reactions, and in the GG/WT blends this enhancement is driven more by the WT char, while in SF/WT blends it is driven by SF chars. It is possible that enhancement of the reactions is caused by mineral matter catalysis of the gasification reactions. The ash contents and alkali indices of the pure samples follow the order SF > WT > GG. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0921 seconds