• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of MapReduce to Ranking SVM for Large-Scale Datasets

Hu, Su-Hsien 10 August 2010 (has links)
Nowadays, search engines are more relying on machine learning techniques to construct a model, using past user queries and clicks as training data, for ranking web pages. There are several learning to rank methods for information retrieval, and among them ranking support vector machine (SVM) attracts a lot of attention in the information retrieval community. One difficulty with Ranking SVM is that the computation cost is very high for constructing a ranking model due to the huge number of training data pairs when the size of training dataset is large. We adopt the MapReduce programming model to solve this difficulty. MapReduce is a distributed computing framework introduced by Google and is commonly adopted in cloud computing centers. It can deal easily with large-scale datasets using a large number of computers. Moreover, it hides the messy details of parallelization, fault-tolerance, data distribution, and load balancing from the programmer and allows him/her to focus on only the underlying problem to be solved. In this paper, we apply MapReduce to Ranking SVM for processing large-scale datasets. We specify the Map function to solve the dual sub problems involved in Ranking SVM and the Reduce function to aggregate all the outputs having the same intermediate key from Map functions of distributed machines. Experimental results show efficiency improvement on ranking SVM by our proposed approach.
2

New support vector machine formulations and algorithms with application to biomedical data analysis

Guan, Wei 13 June 2011 (has links)
The Support Vector Machine (SVM) classifier seeks to find the separating hyperplane wx=r that maximizes the margin distance 1/||w||2^2. It can be formalized as an optimization problem that minimizes the hinge loss Ʃ[subscript i](1-y[subscript i] f(x[subscript i]))₊ plus the L₂-norm of the weight vector. SVM is now a mainstay method of machine learning. The goal of this dissertation work is to solve different biomedical data analysis problems efficiently using extensions of SVM, in which we augment the standard SVM formulation based on the application requirements. The biomedical applications we explore in this thesis include: cancer diagnosis, biomarker discovery, and energy function learning for protein structure prediction. Ovarian cancer diagnosis is problematic because the disease is typically asymptomatic especially at early stages of progression and/or recurrence. We investigate a sample set consisting of 44 women diagnosed with serous papillary ovarian cancer and 50 healthy women or women with benign conditions. We profile the relative metabolite levels in the patient sera using a high throughput ambient ionization mass spectrometry technique, Direct Analysis in Real Time (DART). We then reduce the diagnostic classification on these metabolic profiles into a functional classification problem and solve it with functional Support Vector Machine (fSVM) method. The assay distinguished between the cancer and control groups with an unprecedented 99\% accuracy (100\% sensitivity, 98\% specificity) under leave-one-out-cross-validation. This approach has significant clinical potential as a cancer diagnostic tool. High throughput technologies provide simultaneous evaluation of thousands of potential biomarkers to distinguish different patient groups. In order to assist biomarker discovery from these low sample size high dimensional cancer data, we first explore a convex relaxation of the L₀-SVM problem and solve it using mixed-integer programming techniques. We further propose a more efficient L₀-SVM approximation, fractional norm SVM, by replacing the L₂-penalty with L[subscript q]-penalty (q in (0,1)) in the optimization formulation. We solve it through Difference of Convex functions (DC) programming technique. Empirical studies on the synthetic data sets as well as the real-world biomedical data sets support the effectiveness of our proposed L₀-SVM approximation methods over other commonly-used sparse SVM methods such as the L₁-SVM method. A critical open problem in emph{ab initio} protein folding is protein energy function design. We reduce the problem of learning energy function for extit{ab initio} folding to a standard machine learning problem, learning-to-rank. Based on the application requirements, we constrain the reduced ranking problem with non-negative weights and develop two efficient algorithms for non-negativity constrained SVM optimization. We conduct the empirical study on an energy data set for random conformations of 171 proteins that falls into the {it ab initio} folding class. We compare our approach with the optimization approach used in protein structure prediction tool, TASSER. Numerical results indicate that our approach was able to learn energy functions with improved rank statistics (evaluated by pairwise agreement) as well as improved correlation between the total energy and structural dissimilarity.

Page generated in 0.0401 seconds