Spelling suggestions: "subject:"banking anda selection (estatistics)"" "subject:"banking anda selection (cstatistics)""
41 |
Wandering ideal point models for single or multi-attribute ranking data: a Bayesian approachLeung, Hiu-lan., 梁曉蘭. January 2003 (has links)
published_or_final_version / abstract / toc / Statistics and Actuarial Science / Master / Master of Philosophy
|
42 |
Multiple comparison techniques for order restricted modelsNashimoto, Kane, January 2004 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 159-165). Also available on the Internet.
|
43 |
Multiple comparison techniques for order restricted models /Nashimoto, Kane, January 2004 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 159-165). Also available on the Internet.
|
44 |
Paired Comparison Models for Ranking National Soccer TeamsHallinan, Shawn E. January 2005 (has links)
Project report (M.S.) -- Worcester Polytechnic Institute. / Keywords: Bradley-Terry; paired comparison; bayesian statistics. Includes bibliographical references (p. 49).
|
45 |
Trigonometric scores rank procedures with applications to long-tailed distributions /Kravchuk, Olena. January 2005 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2006. / Includes bibliography.
|
46 |
An analysis of the 2002 NCAA men's basketball championship bracketing proceduresBrown, Katherine V. January 2003 (has links)
Thesis (M.A.)--University of North Carolina at Chapel Hill, 2003. / Includes bibliographical references (leaves 113-114).
|
47 |
Rank-sum test for two-sample location problem under order restricted randomized designSun, Yiping. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 121-124).
|
48 |
A ranking experiment with paired comparisons and a factorial designAbelson, Robert M. 08 September 2012 (has links)
A method is presented for analysing a 2 x 2 factorial experiment in which the data consist cf relative rankings in pairwise comparisons. Maximum likelihood estimates are developed for the ratings of the various levels of each factor und for the treatment combinations. Likelihood ratio tests of the most important hypotheses likely to arise are derived in detail. The large sample approximations are used. In addition, the method is presented in a manner such that tests of other hypotheses in which the experimenter might be interested can easily be derived.
The equations for the analysis of a factorial design of arbitrary size are presented, It can be seen, however, that the complexity of these equations render an attempt at their solution impractical in most cases and more work must be done if a useful method of analysing experiments of this, type is to be found. / Master of Science
|
49 |
Algoritmiese rangordebepaling van akademiese tydskrifteStrydom, Machteld Christina 31 October 2007 (has links)
Opsomming
Daar bestaan 'n behoefte aan 'n objektiewe maatstaf om die gehalte van
akademiese publikasies te bepaal en te vergelyk.
Hierdie navorsing het die invloed of reaksie wat deur 'n publikasie gegenereer
is uit verwysingsdata bepaal. Daar is van 'n iteratiewe algoritme gebruik
gemaak wat gewigte aan verwysings toeken.
In die Internetomgewing word hierdie benadering reeds met groot sukses
toegepas deur onder andere die PageRank-algoritme van die Google soekenjin.
Hierdie en ander algoritmes in die Internetomgewing is bestudeer om 'n
algoritme vir akademiese artikels te ontwerp. Daar is op 'n variasie van die
PageRank-algoritme besluit wat 'n Invloedwaarde bepaal. Die algoritme is
op gevallestudies getoets. Die empiriese studie dui daarop dat hierdie variasie
spesialisnavorsers se intu¨ıtiewe gevoel beter weergee as net die blote tel van
verwysings.
Abstract
Ranking of journals are often used as an indicator of quality, and is extensively
used as a mechanism for determining promotion and funding.
This research studied ways of extracting the impact, or influence, of a journal
from citation data, using an iterative process that allocates a weight to the
source of a citation.
After evaluating and discussing the characteristics that influence quality and
importance of research with specialist researchers, a measure called the Influence
factor was introduced, emulating the PageRankalgorithm used by
Google to rank web pages. The Influence factor can be seen as a measure
of the reaction that was generated by a publication, based on the number of
scientists who read and cited itA good correlation between the rankings produced by the Influence factor
and that given by specialist researchers were found. / Mathematical Sciences / M.Sc. (Operasionele Navorsing)
|
50 |
Analysing ranking algorithms and publication trends on scholarly citation networksDunaiski, Marcel Paul 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Citation analysis is an important tool in the academic community. It can aid universities,
funding bodies, and individual researchers to evaluate scientific work and direct resources
appropriately. With the rapid growth of the scientific enterprise and the increase of online
libraries that include citation analysis tools, the need for a systematic evaluation of these
tools becomes more important.
The research presented in this study deals with scientific research output, i.e., articles
and citations, and how they can be used in bibliometrics to measure academic success.
More specifically, this research analyses algorithms that rank academic entities such as
articles, authors and journals to address the question of how well these algorithms can
identify important and high-impact entities.
A consistent mathematical formulation is developed on the basis of a categorisation
of bibliometric measures such as the h-index, the Impact Factor for journals, and ranking
algorithms based on Google’s PageRank. Furthermore, the theoretical properties of each
algorithm are laid out.
The ranking algorithms and bibliometric methods are computed on the Microsoft
Academic Search citation database which contains 40 million papers and over 260 million
citations that span across multiple academic disciplines.
We evaluate the ranking algorithms by using a large test data set of papers and authors
that won renowned prizes at numerous Computer Science conferences. The results show
that using citation counts is, in general, the best ranking metric. However, for certain
tasks, such as ranking important papers or identifying high-impact authors, algorithms
based on PageRank perform better. As a secondary outcome of this research, publication
trends across academic disciplines are analysed to show changes in publication behaviour
over time and differences in publication patterns between disciplines. / AFRIKAANSE OPSOMMING: Sitasiesanalise is ’n belangrike instrument in die akademiese omgewing. Dit kan universiteite,
befondsingsliggams en individuele navorsers help om wetenskaplike werk te evalueer
en hulpbronne toepaslik toe te ken. Met die vinnige groei van wetenskaplike uitsette
en die toename in aanlynbiblioteke wat sitasieanalise insluit, word die behoefte aan ’n
sistematiese evaluering van hierdie gereedskap al hoe belangriker.
Die navorsing in hierdie studie handel oor die uitsette van wetenskaplike navorsing,
dit wil sê, artikels en sitasies, en hoe hulle gebruik kan word in bibliometriese studies
om akademiese sukses te meet. Om meer spesifiek te wees, hierdie navorsing analiseer
algoritmes wat akademiese entiteite soos artikels, outeers en journale gradeer. Dit wys
hoe doeltreffend hierdie algoritmes belangrike en hoë-impak entiteite kan identifiseer.
’n Breedvoerige wiskundige formulering word ontwikkel uit ’n versameling van bibliometriese
metodes soos byvoorbeeld die h-indeks, die Impak Faktor vir journaale en die
rang-algoritmes gebaseer op Google se PageRank. Verder word die teoretiese eienskappe
van elke algoritme uitgelê.
Die rang-algoritmes en bibliometriese metodes gebruik die sitasiedatabasis van Microsoft
Academic Search vir berekeninge. Dit bevat 40 miljoen artikels en meer as 260
miljoen sitasies, wat oor verskeie akademiese dissiplines strek.
Ons gebruik ’n groot stel toetsdata van dokumente en outeers wat bekende pryse op
talle rekenaarwetenskaplike konferensies gewen het om die rang-algoritmes te evalueer.
Die resultate toon dat die gebruik van sitasietellings, in die algemeen, die beste rangmetode
is. Vir sekere take, soos die gradeering van belangrike artikels, of die identifisering
van hoë-impak outeers, presteer algoritmes wat op PageRank gebaseer is egter beter. ’n
Sekondêre resultaat van hierdie navorsing is die ontleding van publikasie tendense in
verskeie akademiese dissiplines om sodoende veranderinge in publikasie gedrag oor tyd
aan te toon en ook die verskille in publikasie patrone uit verskillende dissiplines uit te
wys.
|
Page generated in 0.1655 seconds