• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Score Test and Likelihood Ratio Test for Zero-Inflated Binomial Distribution and Geometric Distribution

Dai, Xiaogang 01 April 2018 (has links)
The main purpose of this thesis is to compare the performance of the score test and the likelihood ratio test by computing type I errors and type II errors when the tests are applied to the geometric distribution and inflated binomial distribution. We first derive test statistics of the score test and the likelihood ratio test for both distributions. We then use the software package R to perform a simulation to study the behavior of the two tests. We derive the R codes to calculate the two types of error for each distribution. We create lots of samples to approximate the likelihood of type I error and type II error by changing the values of parameters. In the first chapter, we discuss the motivation behind the work presented in this thesis. Also, we introduce the definitions used throughout the paper. In the second chapter, we derive test statistics for the likelihood ratio test and the score test for the geometric distribution. For the score test, we consider the score test using both the observed information matrix and the expected information matrix, and obtain the score test statistic zO and zI . Chapter 3 discusses the likelihood ratio test and the score test for the inflated binomial distribution. The main parameter of interest is w, so p is a nuisance parameter in this case. We derive the likelihood ratio test statistics and the score test statistics to test w. In both tests, the nuisance parameter p is estimated using maximum likelihood estimator pˆ. We also consider the score test using both the observed and the expected information matrices. Chapter 4 focuses on the score test in the inflated binomial distribution. We generate data to follow the zero inflated binomial distribution by using the package R. We plot the graph of the ratio of the two score test statistics for the sample data, zI /zO , in terms of different values of n0, the number of zero values in the sample. In chapter 5, we discuss and compare the use of the score test using two types of information matrices. We perform a simulation study to estimate the two types of errors when applying the test to the geometric distribution and the inflated binomial distribution. We plot the percentage of the two errors by fixing different parameters, such as the probability p and the number of trials m. Finally, we conclude by briefly summarizing the results in chapter 6.

Page generated in 0.0805 seconds