• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 2
  • 2
  • Tagged with
  • 30
  • 30
  • 30
  • 30
  • 30
  • 12
  • 9
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Der Weg zum digitalen Zwilling mit Mainstream CAD-Lösungen

Schawohl, Elke 05 July 2018 (has links)
Von der ersten Idee bis zur Auslieferung eines Produktes laufen verschiedene Prozesse ab, die koordiniert und optimiert werden, um Produkte schnell zur Marktreife zu entwickeln. Die Digitalisierung von Prozessen sowie eine firmenweit einheitliche Datenplattform sind in der Produktentwicklung zwingend notwendig. Digitaler Zwilling, und PLM rücken in den Fokus. Die Herausforderung der Industrie liegt in der Optimierung von Produkten. Wo beginnt die Optimierung? Während der Konstruktion greifen verschiedene Optimierungstools in die Entwicklungsphase ein. Skalierbare FEM-Tools ermöglichen konstruktionsbegleitende Analysen. Verschiedene Konstruktions-Tools in der CAD-Lösung sparen Zeit und Kosten. Die Konstruktion der nächsten Generation Generative Konstruktion – bei der Modellerzeugung werden die Vorteile der additiven Fertigung einbezogen und somit die Bauteilkonstruktion optimiert. Reverse Engineering bietet die Möglichkeit direkt mit Facettendaten zu arbeiten und Flächen zu generieren. Convergent Modeling bietet die nahtlose Kombination von „B-Rep“-Volumen und „Facetten“-Modellen. Solid Edge Portfolio - die Zukunft der Produktentwicklung Solid Edge Apps erweitern den Funktionsumfang. Auf bestimmte Marktsegmente entwickelte Applikationen runden die Anwendungsmöglichkeiten ab.
22

Neue Freiheiten bei der Konstruktion durch den Einsatz von Topologieoptimierung und additiver Fertigung

Waidmann, Axel 22 June 2018 (has links)
Durch die neue Schweißfunktionalität in Creo 4, welche es ermöglicht Schweißnähte als Volumengeometrie zu modellieren, entstehen viele neue Möglichkeiten zur Berechnung der Spannungen innerhalb der Schweißnähte. Damit einhergehend entstehen neue Möglichkeiten zur Berechnung und Evaluierung dieser Schweißnähte nach den Richtlinien der FKM. Die Berechnung anhand der FKM-Richtlinien soll hierbei anhand der zwei Simulationstools Creo Simulate und Ansys Simulation dargestellt werden.
23

Drahtbasierte additive Fertigung des Warmarbeitsstahls X37CrMoV5-1 mittels Elektronenstrahls

Hengst, Philipp 02 August 2023 (has links)
Im Rahmen der vorliegenden Arbeit wurde die drahtbasierte additive Fertigung mittels Elektronstrahls (WEBAM) unter Nutzung einer lateralen Drahtzuführung und des Warmarbeitsstahls X37CrMoV5-1 untersucht. Die Schwerpunkte lagen auf der Analyse des Einflusses der Prozessparameter, der Drahtführungstechniken (schleppend, stechend und seitlich), des Substratwerkstoffes und des Materialübergangs auf die Prozessstabilität sowie die Auftraggeometrie. Das Ziel war die prozesssichere Herstellung von 3D-Geometrien mit bidirektionaler und kontinuierlicher Aufbaustrategie. Die Untersuchungen zeigten, dass die Auftraggeometrie und insbesondere der Materialübergang wesentlich vom Substratwerkstoff abhängig waren. Anhand eines aufgestellten Prozessfensters wurde ein Parametersatz ermittelt, welcher unabhängig von der Drahtführungstechnik nahezu identische Auftraggeometrien erzeugte. Mit Hilfe einer dynamischen Anpassung des Positionsversatzes für die jeweilige Drahtführungstechnik konnten rissfreie Aufbauten mit bidirektionaler, alternierender Aufbaustrategie generiert werden. Diese Aufbauten wurden anschließend hinsichtlich der Mikrostruktur sowie der mechanischen Eigenschaften in Abhängigkeit vom Wärmebehandlungszustand charakterisiert. Die Prozessstabilität und Reproduzierbarkeit konnte anhand von mehreren aufgebauten 3D-Geometrien mit hoher Konturtreu demonstriert werden.
24

Neue Werkstoffe über additive Fertigung

Günther, Johannes, Niendorf, Thomas 04 October 2016 (has links) (PDF)
Über die additive Fertigung, oftmals bezeichnet als 3D-Druck, lassen sich Bauteile nahezu beliebiger geometrischer Komplexität herstellen. Gleichzeitig lassen die Prozessrandbedingungen die direkte Einstellung der Mikrostruktur in den verwendeten metallischen Werkstoffen zu. Hieraus ergeben sich weitreichende Möglichkeiten bezüglich der Eigenschaftsoptimierung aktueller Hochleistungswerkstoffe.
25

Statisches und zyklisches Verformungsverhalten fein- und ultrafeinkörniger Werkstoffzustände eines metastabilen austenitischen Stahls

Droste, Matthias 08 December 2020 (has links)
Ein metastabiler austenitischer Stahl der Zusammensetzung 16Cr-7Mn-6Ni wurde einerseits über die Methode der Rückumwandlung in Werkstoffzustände verschiedener Korngrößen überführt und andererseits additiv über das Electron Beam Melting (EBM)-Verfahren gefertigt. Das statische und das zyklische Verformungsverhalten werden stark von der Korngröße beeinflusst. Insbesondere der ultrafeinkörnige Zustand verzeichnete einen erheblichen Anstieg der Festigkeit bei gleichzeitig hoher Duktilität. Die Lebensdauer übertraf bei niedrigen Dehnungsamplituden die Lebensdauer der Vergleichszustände und lag - für ultrafeinkörnige Gefüge außergewöhnlich - selbst bei hohen zyklischen Beanspruchungen auf einem vergleichbaren Niveau. Im Gegensatz zur Korngröße hatten die prozessinhärenten Defekte der mittels EBM hergestellten Varianten kaum einen Effekt auf das Verformungsverhalten des Stahls. Auch die Absenkung der Lebensdauer fiel vergleichsweise gering aus. Diese hervorragende Schadenstoleranz wird der hohen Duktilität in Kombination mit der enormen Verfestigungskapazität zugeschrieben.
26

Neue Werkstoffe über additive Fertigung

Günther, Johannes, Niendorf, Thomas January 2015 (has links)
Über die additive Fertigung, oftmals bezeichnet als 3D-Druck, lassen sich Bauteile nahezu beliebiger geometrischer Komplexität herstellen. Gleichzeitig lassen die Prozessrandbedingungen die direkte Einstellung der Mikrostruktur in den verwendeten metallischen Werkstoffen zu. Hieraus ergeben sich weitreichende Möglichkeiten bezüglich der Eigenschaftsoptimierung aktueller Hochleistungswerkstoffe.
27

Methoden und Herausforderungen bei der numerischen Simulation des selektiven Laserschmelzens (SLM)

Lüder, Stephan, Graf, Marcel, Awiszus, Birgit, Taufek, Thoufeili, Manurung, Yupiter HP 05 July 2019 (has links)
Additive Fertigungsverfahren stellen in den letzten Jahren einen Megatrend dar, da sich mit diesen Verfahren endkonturnahe Werkstücke mit hohem Materialausnutzungsgrad herstellen lassen. Die auch als 3D-Druck bekannt gewordenen additiven Fertigungsverfahren sind jedoch nicht auf die Prototypenfertigung aus Kunststoffen begrenzt. Beim selektiven Laserschmelzen werden metallische Werkstoffe im Pulverbettverfahren mittels Laserstrahl aufgeschmolzen und somit schichtweise aufgebaut. Das Verfahren findet bereits in der Luft- und Raumfahrt, der Medizintechnik, aber auch in der Automobilindustrie und im Maschinenbau Anwendung für Prototypen, Einzelanfertigungen oder Kleinstserien. Des Weiteren ermöglicht es auch die Herstellung von Werkstücken mit besonders hoher Komplexität, die mit spanenden Verfahren nicht herstellbar sind, und bietet dadurch neue Gestaltungsmöglichkeiten bei der Konstruktion. Innerhalb des Vortrags werden nach der Vorstellung des Verfahrens verschiedene Methoden zur numerischen Simulation des selektiven Laserschmelzens von Edelstahl (1.4404) am Beispiel der kommerziellen Software Simufact Additive erläutert. Dazu werden der mechanische und thermo-mechanische Lösungsansatz betrachtet sowie die Methode zur Kalibrierung der Simulationen erläutert. Die Erläuterung eines voll transienten thermo-mechanischen Ansatzes erfolgt unter Verwendung der Software MSC Marc. Des Weiteren wird der Einfluss der Orientierung des Werkstücks im Herstellungsprozess auf resultierende Spannungen, Verzug sowie mechanische Eigenschaften analysiert und mit experimentellen Untersuchungen untersetzt.
28

Alles auf Draht!: MEFORM 2022 : 17.03.-18.03.2022

Technische Universität Bergakademie Freiberg 27 April 2022 (has links)
Themenschwerpunkte: Moderne Walzstraßenkonzeptionen für neue Umformtechnologien und TMB-Strategien zur Herstellung von Walzdraht, Rechnergestützte Kalibrierung und Stichplanauslegung, Neue Technologien und Anlagen zum Ziehen von Draht, Anlagen und Technologien zur Wärmebehandlung von Draht, Umformtechnologien für neue Drahtwerkstoffe und Legierungen für Hochleistungsanwendungen, Prozessüberwachung und Qualitätssicherung in Prozessen der Drahtherstellung und -weiterverarbeitung, Mathematische Beschreibung der Umformprozesse und des Werkstoffverhaltens bei der Drahterzeugung und Weiterverarbeitung von Draht zu Anwendungen mit hohem Anforderungsprofil / Conference topics: Modern rolling plant concepts for new forming technologies and thermo-mechanical treatment of rolled wires, Computer-aided roll-pass design and pass schedule development, New technologies and equipments for wire drawing, Systems and technologies for the heat treatment of wire forming technologies for new alloys and materials accounting for high-demand wire applications, Process monitoring and quality assurance in wire production and processing, Mathematical modelling of the deformation process and material behaviour during wire production, Post-processing of wire for high-demand applications, and Wire-based additive manufacturing
29

Customized ceramic granules for laser powder bed fusion of aluminum oxide

Pfeiffer, Stefan 04 August 2022 (has links)
Die Implementierung von Laser Powder Bed Fusion bei Aluminiumoxidkeramiken ist aufgrund einer geringen Temperaturwechselbeständigkeit, Bauteilverdichtung, Pulverfließfähigkeit und Lichtabsorption eine große Herausforderung. In dieser Arbeit wurden diese Prob-leme mit unterschiedlichen Ansätzen adressiert. Sprühgetrocknete Aluminiumoxid Granulate wurde zur Verbesserung der Laserabsorption (über 80 % Verbesserung) mit farbigen Nano-Oxidpartikeln dotiert. Es wurden verschiedene Partikelpackungstheorien und Pulverbehand-lungen getestet, um die Pulverbettdichte und damit die Dichte des endgültigen Bauteils (Dichten bis zu 98,6 %) zu erhöhen. Die Pulverqualität wurde durch Schütt und Rütteldichte, Feuchtigkeitsgehalt, Partikelgrößenverteilung, Hausner-Verhältnis, Lawinenwinkel und Oberflächenfraktal charakterisiert. Des Weiteren wurde der Zusatz geeigneter Stoffe zur Verringerung der Rissbildung durch thermische Spannungen getestet. Die In-situ-Bildung von Phasen mit geringer und negativer Wärmeausdehnung reduzierte die Rissbildung in den lasergefertigten Oxidkeramiken stark.:1 Introduction 1 1.1 Motivation 1 1.2 State of the art . 2 1.3 Aim of the project 2 2 Literature review 5 2.1 Additive manufacturing by laser powder bed fusion 5 2.1.1 Classification and process description 5 2.1.2 Advantages against other AM processes 9 2.1.3 Challenges of laser powder bed fusion 12 2.1.4 State of the art of laser powder bed fusion of aluminum oxide based ceramics 13 2.1.4.1 Powder bed preparation and impact on the process 13 2.1.4.2 Critical rating of the powder bed preparation techniques 17 2.1.4.3 Processing methods and properties 19 2.1.4.4 Part properties 26 2.2 Theoretical and experimental considerations for powder bed preparation 35 2.2.1 Spray granulation 35 2.2.2 Particle packing theories 39 2.3 Mechanisms for particle dispersing 41 2.3.1 DLVO-theory 41 2.3.2 Surface charge and electrical double layer 43 2.4 Conceptualization of new ideas for laser powder bed fusion of aluminum oxide 45 2.4.1 Densification, powder flowability and absorption issue 46 2.4.2 Reduction of crack formation 47 3 Doped spray-dried granules to solve densification and absorption issue in laser powder bed fusion of alumina 55 3.1 Dispersing of aluminum oxide, iron oxide and manganese oxide 55 3.1.1 Experimental 55 3.1.2 Particle characterization 57 3.1.3 Saturation amount evaluation of dispersant 59 3.1.4 Particle size distributions after dispersing 62 3.1.4.1 Particle size distributions of alumina powders 62 3.1.4.2 Particle size distribution of dopant 67 3.2 Packing density increase of spray-dried granules 76 3.2.1 Experimental 77 3.2.2 Influence of solid load and particle ratio on granules 83 3.2.3 Influence of dopant shape and multimodal distributions on granules 84 3.2.4 Evolution of pH-value during slurry preparation and slurry stability after mixing of all components 85 3.2.5 Influence of slurry viscosity on yield of granules 88 3.2.6 Addition of coarse alumina to spray-dried granules 89 3.2.7 Application of Andreasen model on mixtures of ceramic particles with spray-dried granules 94 3.2.8 Thermal pre-treatment of granules 98 3.2.9 Influence of surface tension of slurry on granule size and density 110 3.3 Investigation of laser manufactured parts 114 3.3.1 Experimental 115 3.3.2 Influence of different iron oxide dopants and multimodal particle distributions within granules 118 3.3.3 Influence of coarse alumina variation 121 3.3.4 Influence of thermal pre-treatment of powders 127 3.3.5 Grain structure of laser additive manufactured parts 135 3.3.6 Thermal expansion of laser processed parts 137 3.3.7 Influence of thermal pre-treatment and laser processing on manganese amount within granules and laser additive manufactured parts 138 4 Additives to reduce crack formation in selective laser melting and sintering of alumina 143 4.1 Experimental 144 4.2 Additives to reduce thermal stresses 150 4.2.1 Selective laser melting with mullite additives 150 4.2.2 Amorphous alumina formation by rare earth oxide doping 160 4.2.3 Formation of aluminum titanate by use of reduced titanium oxide 169 4.2.3.1 Dispersing of titanium oxide nanoparticles in water 170 4.2.3.2 Thermal treatment of Al2O3/TiO2 granules under argon/hydrogen atmosphere 172 4.2.3.3 Laser manufacturing of parts 178 4.2.4 In-situ formation of negative thermal expansion materials 187 4.2.4.1 Dispersing of zirconia and tungsten oxide nanoparticles 187 4.2.4.2 Influence of spray drying process parameters 191 4.2.4.3 Preparation of final powders for laser powder bed fusion 197 4.2.4.4 Laser manufacturing of layers and parts 200 4.3 Mechanical properties of laser processed parts 205 5 Flowability and inner structure of customized granules 209 5.1 Experimental 209 5.2 Comparison of flowability in terms of Hausner ratio, Avalanche angle and surface fractal measurements 211 5.2.1 Influence of coarse alumina AA18 variation 211 5.2.2 Influence of thermal pre-treatment of powders 213 5.2.3 Influence of dopant content within granules 216 5.2.4 Flowability of zirconia-tungsten oxide granules and alumina granules with mullite or rare earth oxide addition 219 5.2.5 Flowability of titanium oxide doped alumina powders 221 5.3 Cross sections of customized granules to image inner structure 224 6 Summary, conclusions and outlook 233 6.1 Summary and conclusions 233 6.2 Outlook 241 References 245 List of Figures 260 List of Tables 269 / The implementation of laser powder bed fusion of aluminum oxide ceramics is challenging due to a low thermal shock resistance, part densification, powder flowability and light absorptance. In this work, these challenges have been addressed by different approaches. Spray-dried alumina granules were doped with colored oxide nanoparticles to improve the laser absorption (improvement by over 80%). Different particle packing theories and powder treatments were tested to increase the powder bed density and therefore, the final part density (densities up to 98.6%). The powder quality was characterized by apparent and tapped density, moisture content, particle size distribution, Hausner ratio, avalanche angle and sur-face fractal. Furthermore, the addition of suitable was tested to reduce crack formation caused by thermal stresses. The in-situ formation of low and negative thermal expansion phases strongly reduced the crack formation in the laser manufactured oxide ceramic parts.:1 Introduction 1 1.1 Motivation 1 1.2 State of the art . 2 1.3 Aim of the project 2 2 Literature review 5 2.1 Additive manufacturing by laser powder bed fusion 5 2.1.1 Classification and process description 5 2.1.2 Advantages against other AM processes 9 2.1.3 Challenges of laser powder bed fusion 12 2.1.4 State of the art of laser powder bed fusion of aluminum oxide based ceramics 13 2.1.4.1 Powder bed preparation and impact on the process 13 2.1.4.2 Critical rating of the powder bed preparation techniques 17 2.1.4.3 Processing methods and properties 19 2.1.4.4 Part properties 26 2.2 Theoretical and experimental considerations for powder bed preparation 35 2.2.1 Spray granulation 35 2.2.2 Particle packing theories 39 2.3 Mechanisms for particle dispersing 41 2.3.1 DLVO-theory 41 2.3.2 Surface charge and electrical double layer 43 2.4 Conceptualization of new ideas for laser powder bed fusion of aluminum oxide 45 2.4.1 Densification, powder flowability and absorption issue 46 2.4.2 Reduction of crack formation 47 3 Doped spray-dried granules to solve densification and absorption issue in laser powder bed fusion of alumina 55 3.1 Dispersing of aluminum oxide, iron oxide and manganese oxide 55 3.1.1 Experimental 55 3.1.2 Particle characterization 57 3.1.3 Saturation amount evaluation of dispersant 59 3.1.4 Particle size distributions after dispersing 62 3.1.4.1 Particle size distributions of alumina powders 62 3.1.4.2 Particle size distribution of dopant 67 3.2 Packing density increase of spray-dried granules 76 3.2.1 Experimental 77 3.2.2 Influence of solid load and particle ratio on granules 83 3.2.3 Influence of dopant shape and multimodal distributions on granules 84 3.2.4 Evolution of pH-value during slurry preparation and slurry stability after mixing of all components 85 3.2.5 Influence of slurry viscosity on yield of granules 88 3.2.6 Addition of coarse alumina to spray-dried granules 89 3.2.7 Application of Andreasen model on mixtures of ceramic particles with spray-dried granules 94 3.2.8 Thermal pre-treatment of granules 98 3.2.9 Influence of surface tension of slurry on granule size and density 110 3.3 Investigation of laser manufactured parts 114 3.3.1 Experimental 115 3.3.2 Influence of different iron oxide dopants and multimodal particle distributions within granules 118 3.3.3 Influence of coarse alumina variation 121 3.3.4 Influence of thermal pre-treatment of powders 127 3.3.5 Grain structure of laser additive manufactured parts 135 3.3.6 Thermal expansion of laser processed parts 137 3.3.7 Influence of thermal pre-treatment and laser processing on manganese amount within granules and laser additive manufactured parts 138 4 Additives to reduce crack formation in selective laser melting and sintering of alumina 143 4.1 Experimental 144 4.2 Additives to reduce thermal stresses 150 4.2.1 Selective laser melting with mullite additives 150 4.2.2 Amorphous alumina formation by rare earth oxide doping 160 4.2.3 Formation of aluminum titanate by use of reduced titanium oxide 169 4.2.3.1 Dispersing of titanium oxide nanoparticles in water 170 4.2.3.2 Thermal treatment of Al2O3/TiO2 granules under argon/hydrogen atmosphere 172 4.2.3.3 Laser manufacturing of parts 178 4.2.4 In-situ formation of negative thermal expansion materials 187 4.2.4.1 Dispersing of zirconia and tungsten oxide nanoparticles 187 4.2.4.2 Influence of spray drying process parameters 191 4.2.4.3 Preparation of final powders for laser powder bed fusion 197 4.2.4.4 Laser manufacturing of layers and parts 200 4.3 Mechanical properties of laser processed parts 205 5 Flowability and inner structure of customized granules 209 5.1 Experimental 209 5.2 Comparison of flowability in terms of Hausner ratio, Avalanche angle and surface fractal measurements 211 5.2.1 Influence of coarse alumina AA18 variation 211 5.2.2 Influence of thermal pre-treatment of powders 213 5.2.3 Influence of dopant content within granules 216 5.2.4 Flowability of zirconia-tungsten oxide granules and alumina granules with mullite or rare earth oxide addition 219 5.2.5 Flowability of titanium oxide doped alumina powders 221 5.3 Cross sections of customized granules to image inner structure 224 6 Summary, conclusions and outlook 233 6.1 Summary and conclusions 233 6.2 Outlook 241 References 245 List of Figures 260 List of Tables 269
30

Thermo-Mechanical Modelling of Wire-Arc Additive Manufacturing (WAAM) of Semi-Finished Products

Graf, Marcel, Hälsig, Andre, Höfer, Kevin, Awiszus, Birgit, Mayr, Peter 13 February 2019 (has links)
Additive manufacturing processes have been investigated for some years, and are commonly used industrially in the field of plastics for small- and medium-sized series. The use of metallic deposition material has been intensively studied on the laboratory scale, but the numerical prediction is not yet state of the art. This paper examines numerical approaches for predicting temperature fields, distortions, and mechanical properties using the Finite Element (FE) software MSC Marc. For process mapping, the filler materials G4Si1 (1.5130) for steel, and AZ31 for magnesium, were first characterized in terms of thermo-physical and thermo-mechanical properties with process-relevant cast microstructure. These material parameters are necessary for a detailed thermo-mechanical coupled Finite Element Method (FEM). The focus of the investigations was on the numerical analysis of the influence of the wire feed (2.5–5.0 m/min) and the weld path orientation (unidirectional or continuous) on the temperature evolution for multi-layered walls of miscellaneous materials. For the calibration of the numerical model, the real welding experiments were carried out using the gas-metal arc-welding process—cold metal transfer (CMT) technology. A uniform wall geometry can be produced with a continuous welding path, because a more homogeneous temperature distribution results.

Page generated in 0.1174 seconds