Spelling suggestions: "subject:"rapidly.radiating"" "subject:"rapidlygrowing""
1 |
Rapidly Rotating Ultracold Atoms In Harmonic TrapsGhazanfari, Nader 01 June 2011 (has links) (PDF)
In this study we investigate the properties of trapped atoms
subjected to rapid rotations. The study is divided into two distinct
parts, one for fermions, another for bosons. In the case of the
degenerate Fermi gas we explore the density structure of
non-interacting cold atoms when they are rotated rapidly. On the
other hand, for rapidly rotating two component Bose condensate, we
search for new lattice structures in the presence of contact and
dipolar interactions.
First, the density structure of Fermi gases in a rotating trap is
investigated. We focus on the anisotropic trap case, in which two
distinct regimes, two and one dimensional regimes, depending on
rotation frequency and anisotropy are observed. Two regimes can be
illustrated by a simple description of maximum number of states
between two Landau levels, which is strongly related to the
dimensionality of the system. The regimes are separated from each
other by a minimum point in this description. For small anisotropy
values the density profiles show a step structure where each step is
demonstrated by an elliptical plateau. Each plateau represents a
Landau level with a constant density. The local density
approximation describes the two dimensional regime with a perfect
similarity in the structure of fermion density. The case for one
dimensional regime is a little different from the two dimensional
case. For large anisotropy values the Friedel oscillation is the
dominant aspect of the density profiles. The density profiles show
gaussian structure along the direction of strong trapping, and a
semicircular form with prominent oscillations along the weak
confining direction. Again, the system is nicely described by local
density approximation in this regime. A smooth crossover between two
regimes is observed, with a switching from a step structure profile
to a soft edge transition with Friedel oscillations. At finite
temperatures, the step structures are smeared out in two dimension.
In one dimensional regime the Friedel oscillations are cleaned as
soon as the temperature is turned on.
The second part of the study is devoted to the investigation of
different lattice structures in two component Bose condensates
subjected to very fast rotation, this time in the presence of
interactions. We explore the existence of new vortex lattice
structures for dipolar two component condensates scanning a wide
range of interaction strengths. We introduce a phase diagram as a
function of intra and inter-component interactions showing different
type of vortex lattice structures. New types of lattice structures,
overlapped square and overlapped rectangular, emerge as a
result of dipolar interactions and s-wave interaction for a two
component condensate. The region where the attractive
inter-component interactions dominate the repulsive interactions, the
overlapped lattices are formed. The intra-component interactions,
which defines the behavior of each component inside, result in
different type of lattices by changing the strength of interactions.
Two different limits of phase diagram reproduce the results of
ordinary two component and dipolar one component Bose condensates.
The results of calculation are in agreement with the results of
previous studies for two regimes.
|
2 |
Discovery of a Magnetic Field in the Rapidly-Rotating O-Type Secondary of the Colliding-Wind Binary HD 47129 (Plaskett’s Star).Grunhut, J., Wade, G., Leutenegger, M., Petit, V., Rauw, G., Neiner, C., Martins, F., Cohen, D., Gagné, M., Ignace, Richard, Mathis, S., de Mink, S., Moffat, A., Owocki, S., Shultz, M., Sundqvist, J., MiMeS Collaboration, 11 January 2013 (has links) (PDF)
We report the detection of a strong, organized magnetic field in the secondary component of the massive O8III/I+O7.5V/III double-lined spectroscopic binary system HD 47129 (Plaskett's star) in the context of the Magnetism in Massive Stars survey. Eight independent Stokes V observations were acquired using the Echelle SpectroPolarimetric Device for the Observations of Stars (ESPaDOnS) spectropolarimeter at the Canada–France–Hawaii Telescope and the Narval spectropolarimeter at the Télescope Bernard Lyot. Using least-squares deconvolution we obtain definite detections of signal in Stokes V in three observations. No significant signal is detected in the diagnostic null (N) spectra. The Zeeman signatures are broad and track the radial velocity of the secondary component; we therefore conclude that the rapidly rotating secondary component is the magnetized star. Correcting the polarized spectra for the line and continuum of the (sharp-lined) primary, we measured the longitudinal magnetic field from each observation. The longitudinal field of the secondary is variable and exhibits extreme values of −810 ± 150 and +680 ± 190 G, implying a minimum surface dipole polar strength of 2850 ± 500 G. In contrast, we derive an upper limit (3σ) to the primary's surface magnetic field of 230 G. The combination of a strong magnetic field and rapid rotation leads us to conclude that the secondary hosts a centrifugal magnetosphere fed through a magnetically confined wind. We revisit the properties of the optical line profiles and X-ray emission – previously interpreted as a consequence of colliding stellar winds – in this context. We conclude that HD 47129 represents a heretofore unique stellar system – a close, massive binary with a rapidly rotating, magnetized component – that will be a rich target for further study.
|
Page generated in 0.0729 seconds