• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetocaloric effect and critical behaviour near the magnetic phase transition temperature in rare-earth compounds

Mboukam, Jean Jules January 2018 (has links)
Magister Scientiae - MSc (Physics) / Rare-earth intermetallic compounds continue to draw considerable attention, due to their fundamental importance in understanding physical properties and potential applications based on a variety of phenomena. The focus of this project is to employ two family of rare-earth intermetallic compounds: RE2Pt2In (RE = Pr, Nd) and RE8Pd24Ga (RE = Gd, Tb, Dy) ternary intermetallic systems as a model candidate to uncover the underlying ground state properties that result in a strong coupling between the conduction electron and the 4f-electron of the rare-earth ions.
2

Estudo das propriedades magnéticas e magnetocalóricas em compostos RZn (R= Tb, Gd, Ho e Er) / Magnetic and magnetocaloric properties of Rzn compounds (R= TB, Gd, Ho and Er)

Monteiro, José Carlos Botelho, 1984- 19 August 2018 (has links)
Orientador: Flávio César Guimarães Gandra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-19T11:06:30Z (GMT). No. of bitstreams: 1 Monteiro_JoseCarlosBotelho_M.pdf: 5466679 bytes, checksum: 3148a9c0487d05fa44922d063e525114 (MD5) Previous issue date: 2011 / Resumo: Neste trabalho apresentamos os resultados das medidas de magnetização e calorimetria em policristais da série RZn (R= Tb, Gd, Er e Ho). Através da análise das curvas de magnetização em função da temperatura, obtidas em campos de até 5 T, avaliamos e obtemos o efeito magnetocalórico (EMC) para os compostos da série, expresso através da variação isotérmica da entropia. O composto GdZn é o mais simples da série sendo o único que não apresenta efeitos inerentes à anisotropia magnética. Pelas medidas de magnetização observamos uma transição de ordenamento magnético em 260 K. Para este composto utilizamos um hamiltoniano simples, considerando apenas as contribuições devido à interação de troca e ao efeito Zeeman para simular curvas de calor específico e magnetização. Com os dados obtidos observamos uma variação de entropia máxima de 3,49 mJ/gK para um campo de 5 T em torno de Tc. O ErZn apresenta transição ferromagnética em 18 K e uma queda na magnetização em temperaturas abaixo de Tc, que é resultado de uma transição de reorientação de spin (TRS) induzida por campo. Essa transição é um efeito da anisotropia do sistema e é observada apenas em curvas obtidas em baixos campos magnéticos. Para simular as curvas de magnetização do ErZn e dos demais compostos da série adicionamos ao hamiltoniano utilizado a contribuição devido ao campo cristalino. Ao avaliarmos o EMC do ErZn vemos que existe uma pequena anomalia, resultado da TRS, em torno de 11K para variações em até 2 T de campo. Em campos maiores a anomalia desaparece e obtemos um ?S de até 14,83 mJ/gK em campos de 5 T. Os compostos TbZn e HoZn apresentam transições ferromagnéticas em 195 e 66 K, respectivamente, e ambos apresentam transições de reorientação de spin em temperaturas abaixo de Tc. Diferentemente do ErZn, porém, nesses compostos as TRS não são induzidas por campo, sendo resultado apenas da anisotropia do sistema, mostrando efeitos muito mais pronunciados nas curvas de magnetização e calor específico. Ao calcularmos o EMC desses compostos, observamos dois picos pronunciados relativos à mudança da entropia no material, um devido ao ordenamento magnético em Tc e outro devido à reorientação de spin no material. Essa característica faz com que o EMC nesses compostos tenha uma área de atuação muito maior do que em materiais que só apresentam um ?Smax em Tc, tornando materiais desse tipo fortes candidatos à refrigeração magnética / Abstract: This work presents the results of calorimetric and magnetization measurements on polycrystalline RZn series (R = Tb, Gd, Er and Ho). By analyzing the curves of magnetization as a function of temperature, obtained under fields up to 5 T (6 T for TbZn), we obtain and evaluate the magnetocaloric effect (MCE) for compounds of the series, expressed by the isothermal entropy change. The GdZn compound is the simplest of the series being the only one that has no inherent magnetic anisotropy effects. Through magnetization measurements we observe a magnetic ordering transition at 260 K. For this compound we use a simple Hamiltonian, considering only the contributions due to exchange interaction and the Zeeman Effect to simulate curves of specific heat and magnetization. With the data obtained, GdZn presented a maximum entropy change of 3.49 mJ/gK for a magnetic field of 5 T around Tc. The ErZn presents a ferromagnetic transition at 18 K and a drop in magnetization at temperatures below Tc, which is the result of a spin reorientation transition (SRT) induced by magnetic field. This transition is an effect of the system¿s anisotropy and is observed only in curves at low magnetic fields. To simulate the magnetization curves of ErZn and the other compounds of the series we added to the Hamiltonian the contribution due to the crystalline field. In evaluating the MCE of ErZn we find that there is a small anomaly, the result of SRT, around 11K for field variations up to 2 T. In larger fields the anomaly disappears and we get ?S up to 14.83 mJ / gK at fields of 5 T. The compounds HoZn and TbZn have ferromagnetic transitions at 195 and 66 K, respectively, and both have spin reorientation transitions at temperatures below Tc. Unlike the ErZn compound, however, those SRT are not field-induced, being the sole result of anisotropy of the system and showing effects much more pronounced in the curves of magnetization and specific heat. In calculating the EMC of these compounds, we observe two pronounced peaks on the entropy change in the material, one due to a magnetic ordering at Tc and the other due to spin reorientation in the material. This feature shows that the MCE in these compounds act in a much wider range than the usual materials that shows a peak only in Tc, making them strong candidates for magnetic refrigeration / Mestrado / Física da Matéria Condensada / Mestre em Física
3

Investigação do efeito magnetocalórico convencional e anisotrópico no sistema Er(1-y)Ho(y)N / Investigation of the anisotropic and conventional magnetocaloric effect in the system Er (y-1) Ho (y) N.

Thiago da Silva Teixeira Alvarenga 29 October 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O efeito magnetocalórico, base da refrigeração magnética, é caracterizado por duas quantidades: a variação isotérmica da entropia (ΔST) e a variação adiabática da temperatura (ΔTad) as quais podem ser obtidas sob variações na intensidade de um campo magnético aplicado. Em sistemas que apresentam anisotropia magnética, pode‐se definir o efeito magnetocalórico anisotrópico, o qual, por definição, é calculado através da variação na direção de aplicação de um campo magnético cuja intensidade se mantém fixa. Nos materiais de nosso interesse, o efeito magnetocalórico é estudado teoricamente partindo de um hamiltoniano modelo que leva em conta a rede magnética (que pode ser composta por diversas sub-redes magnéticas acopladas), rede cristalina e a dinâmica dos elétrons de condução. No hamiltoniano magnético são consideradas as interações de troca, Zeeman e campo cristalino (esta ultima responsável pela anisotropia magnética). Recentemente, estudamos o efeito magnetocalórico convencional e o efeito magnetocalórico anisotrópico nos compostos mononitretos com terras-raras, a saber: Ho(y)Er(1-y)N para as concentrações y= 0,1,0.5 e 0.75. Comparações entre nossos resultados teóricos e os dados experimentais para o EMC foram bastante satisfatórias [3,9]. Além disso, diversas predições teóricas como a existência de uma fase ferrimagnética no sistema Ho(y)Er(1-y)N (para a concentração y=0.5) e reorientações de spin nas sub-redes do Ho e Er foram feitas [25]. / The magnetocaloric effect, magnetic refrigeration base, is characterized by two quantities: the isothermal entropy change (ΔST) and the adiabatic temperature change (ΔTad) which can be obtained through variations in the intensity of a magnetic field applied. In systems which present magnetic anisotropy, one can define anisotropic magnetocaloric effect, which, by definition, is calculated through the variation the direction of application of a magnetic field whose intensity remains fixed. In the materials of our interest, the magnetocaloric effect is studied theoretically starting from a model Hamiltonian which takes into account the magnetic lattice (that can be composed of several magnetic sublattices coupled), crystalline lattice and the dynamics of the conduction electrons. In the magnetic hamiltonian are considered the exchange interactions, Zeeman and crystalline electrical field (this latter responsible for the magnetic anisotropy). Recently, we studied the conventional magnetocaloric effect and anisotropic magnetocaloric effect in mononitrides compounds with rare earths, namely: o(Y)Er(1-Y)N for concentrations y= 0,1,0.5 e 0.75 . Comparisons between our theoretical results and experimental data for EMC were quite satisfactory [26].Furthermore, several theoretical predictions how to the existence of a phase ferrimagnetic in the system Ho(y)Er(1-y)N (for concentration ) and spin reorientations in the sublattices of Ho and Er were made [25].
4

Investigação do efeito magnetocalórico convencional e anisotrópico no sistema Er(1-y)Ho(y)N / Investigation of the anisotropic and conventional magnetocaloric effect in the system Er (y-1) Ho (y) N.

Thiago da Silva Teixeira Alvarenga 29 October 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O efeito magnetocalórico, base da refrigeração magnética, é caracterizado por duas quantidades: a variação isotérmica da entropia (ΔST) e a variação adiabática da temperatura (ΔTad) as quais podem ser obtidas sob variações na intensidade de um campo magnético aplicado. Em sistemas que apresentam anisotropia magnética, pode‐se definir o efeito magnetocalórico anisotrópico, o qual, por definição, é calculado através da variação na direção de aplicação de um campo magnético cuja intensidade se mantém fixa. Nos materiais de nosso interesse, o efeito magnetocalórico é estudado teoricamente partindo de um hamiltoniano modelo que leva em conta a rede magnética (que pode ser composta por diversas sub-redes magnéticas acopladas), rede cristalina e a dinâmica dos elétrons de condução. No hamiltoniano magnético são consideradas as interações de troca, Zeeman e campo cristalino (esta ultima responsável pela anisotropia magnética). Recentemente, estudamos o efeito magnetocalórico convencional e o efeito magnetocalórico anisotrópico nos compostos mononitretos com terras-raras, a saber: Ho(y)Er(1-y)N para as concentrações y= 0,1,0.5 e 0.75. Comparações entre nossos resultados teóricos e os dados experimentais para o EMC foram bastante satisfatórias [3,9]. Além disso, diversas predições teóricas como a existência de uma fase ferrimagnética no sistema Ho(y)Er(1-y)N (para a concentração y=0.5) e reorientações de spin nas sub-redes do Ho e Er foram feitas [25]. / The magnetocaloric effect, magnetic refrigeration base, is characterized by two quantities: the isothermal entropy change (ΔST) and the adiabatic temperature change (ΔTad) which can be obtained through variations in the intensity of a magnetic field applied. In systems which present magnetic anisotropy, one can define anisotropic magnetocaloric effect, which, by definition, is calculated through the variation the direction of application of a magnetic field whose intensity remains fixed. In the materials of our interest, the magnetocaloric effect is studied theoretically starting from a model Hamiltonian which takes into account the magnetic lattice (that can be composed of several magnetic sublattices coupled), crystalline lattice and the dynamics of the conduction electrons. In the magnetic hamiltonian are considered the exchange interactions, Zeeman and crystalline electrical field (this latter responsible for the magnetic anisotropy). Recently, we studied the conventional magnetocaloric effect and anisotropic magnetocaloric effect in mononitrides compounds with rare earths, namely: o(Y)Er(1-Y)N for concentrations y= 0,1,0.5 e 0.75 . Comparisons between our theoretical results and experimental data for EMC were quite satisfactory [26].Furthermore, several theoretical predictions how to the existence of a phase ferrimagnetic in the system Ho(y)Er(1-y)N (for concentration ) and spin reorientations in the sublattices of Ho and Er were made [25].
5

Efeito magnetocalórico anisotrópico em compostos a base de terras raras / Anisotropic magnetocaloric effect in compounds based on rare earth

Reis, Ricardo Donizeth dos, 1987- 17 August 2018 (has links)
Orientador: Flávio César Guimarães Gandra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-17T22:36:59Z (GMT). No. of bitstreams: 1 Reis_RicardoDonizethdos_M.pdf: 3698782 bytes, checksum: 685ad61061d7b02d4c3347f86a4822eb (MD5) Previous issue date: 2011 / Resumo: O efeito magnetocalórico (EMC) é a base da refrigeração magnética. O potencial magnetocalórico é caracterizado por duas quantidades termodinâmicas: a variação isotérmica da entropia (?S) e a variação adiabática da temperatura (?T), as quais são calculadas sob uma variação na intensidade do campo magnético aplicado ao sistema. Em sistemas que apresentam anisotropia magnética é observada uma mudança no efeito magnetocalórico porque este potencial torna-se fortemente dependente da direção de aplicação do campo magnético. A anisotropia em sistemas magnéticos pode levar à definição de um efeito magnetocalórico anisotrópico, o qual, por definição, é obtido para um campo cuja intensidade é mantida constante e cuja orientação variamos de uma direção difícil de magnetização para a direção fácil de magnetização. Neste trabalho apresentaremos os resultados obtidos para o efeito magnetocalórico anisotrópico nos compostos monocristalinos de DyAl2, RBi(R=Dy,Ho) e RGa2 (R=Er,Ho). Para o composto DyAl2 , utilizando o hamiltoniano de campo cristalino (CC) e a aproximação de campo médio, foi possível simular as curvas de magnetização e calor específico obtendo boa concordância com os resultados experimentais. Neste composto a variação isotérmica da entropia ?Sanisotrópico obtida pela variação da direção do campo H (EMC anisotrópico) é maior do que ?Siso convencional que, entretanto, ocorre na temperatura de reorientação de spin (T=42K). A forte anisotropia do ErGa2 e do HoGa2 contribui para uma expressiva diferença no ?Smag (~12 e 23J/kgK@5T, respectivamente, para T~10K) quando o campo é aplicado paralela ou perpendicularmente ao eixo fácil. Em ambos os casos a variação anisotrópica de entropia com a temperatura é semelhante ao ?S convencional com o campo magnético aplicado paralelamente ao eixo fácil de magnetização (eixo c para o ErGa2 e plano ab para o HoGa2). Observamos ainda que o EMC do ErGa2 é fortemente afetado pelo campo cristalino. Medidas de calor específico mostraram um acentuado pico tipo Schottky centrado em 40K e, conseqüentemente, somente parte da entropia magnética total se apresenta na temperatura de ordenamento antiferromagnética. Nos compostos de DyBi e HoBi o valor obtido para o EMC anisotrópico foi maior do que o EMC convencional ( cerca de 15% para o DyBi e 45% para o HoBi). Para os dois compostos foi obtido o EMC anisotrópico para os campos magnéticos de 5T, 6T e 7T. Para o HoBi obtivemos um resultado bastante interessante, no qual o EMC anisotrópico encontrado para µ0H= 5T, 24.7J/KgK, é aproximadamente o dobro do obtido para µ0H =7T / Abstract: The magnetic refrigeration is based on the magnetocaloric effect. The magnetocaloric potential is characterized by two thermodynamic quantities: the isothermal entropy change (?S) and the adiabatic temperature change (?Tad), which are calculated upon under a change in the intensity of the applied magnetic field. In anisotropic magnetic systems it is observed a change in the magnetocaloric effect, since this potential becomes strongly dependent on the direction in which the external magnetic field is applied. The anisotropy in such magnetic systems can lead to an inverse magnetocaloric effect, as well as to the definition of an anisotropic magnetocaloric effect, that by definition is calculated upon a magnetic field which intensity is kept fixed and which orientation is changed from a hard direction of magnetization to the easy direction of magnetization. For DyAl2 compound, using crystal field and mean field approximations, it was possible to simulate the magnetization curves and specific heat obtaining a good agreement with experimental results. In this compound the isothermal entropy change ?Sanisotrópico obtained by varying the direction of the field H (anisotropic EMC) is higher than conventional ?Siso, however, occurs in spin reorientation temperature (T = 42K). The strong anisotropy of ErGa2 and HoGa2 contribute to a expressive difference in the ?Smag (~12 and 23J/kgK@50kOe, respectively at T=10K) when the magnetic field is applied parallel or perpendicular to the easy axes. In both cases the anisotropic variation of entropy with temperature is similar to conventional Ds with the applied magnetic field parallel to the easy axis of magnetization (c axis for ErGa2 and plane ab for HoGa2). We also observed that the EMC ErGa2 is strongly affected by crystal field. Specific heat measurements show a sharp peak Schottky type centered at 40K and, therefore, only part of the total magnetic entropy is presented in the antiferromagnetic ordering temperature. In the compounds of DyBi and HoBi the value obtained for the anisotropic EMC was higher than the conventional EMC (~ 15% to DyBi and 45% for HoBi). For the two compounds was obtained the EMC anisotropic for magnetic fields of 5T, 6T and 7T. HoBi obtained for a very interesting result, in which the anisotropic found for EMC µ0H = 5T, 24.7J/KgK is approximately double that obtained for µ0H = 7T / Mestrado / Física da Matéria Condensada / Mestre em Física
6

Medidas diretas do efeito magnetocalórico convencional e anisotrópico por medida do fluxo de calor com dispositivos Peltier / Direct measurement of the convencional and anisotropic magnetocaloric effect by heat flux measurements with Peltier devices

Monteiro, José Carlos Botelho, 1984- 30 August 2018 (has links)
Orientador: Flávio César Guimarães Gandra / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-30T17:33:36Z (GMT). No. of bitstreams: 1 Monteiro_JoseCarlosBotelho_D.pdf: 10216375 bytes, checksum: 06d25402d8c5828939f2e7fa0710efbe (MD5) Previous issue date: 2016 / Resumo: Esta tese tem como principal objetivo desenvolver, apresentar e justificar a utilização de uma metodologia experimental que permita avaliar o efeito magnetocalórico (EMC), em qualquer tipo de material, de modo que as medidas reflitam a resposta real que a amostra fornece ao ser submetida a ciclos de magnetização similares àqueles que ocorrem em sistemas de refrigeração magnética. Para tal, construímos sistemas de medidas que utilizam dispositivos Peltier como sensores de fluxo de calor, capazes de realizar medidas diretas da quantidade de calor que a amostra absorve ou libera em situações aonde há variação de temperatura, campo magnético ou do ângulo entre direção do cristal e o campo aplicado. Na primeira parte do trabalho, foram realizadas medidas no sistema com dispositivos Peltier desenvolvido para uso no equipamento comercial PPMS - Physical Property Measurement System (Sistema de medidas de propriedades físicas) da Quantum Design. Utilizamos os métodos indiretos de medida do EMC mais comuns na literatura (medidas via curvas de magnetização e calor específico) para comparação com as medidas diretas de fluxo de calor através de varredura de campo obtidas pelo nosso sistema. Esta análise foi feita inicialmente em duas amostras com transições magnéticas de primeira e segunda ordem, consideradas como amostras padrão na área do EMC: Gadolínio e a liga Gd5Ge2Si2. Discutimos as diferenças encontradas e definimos aquele que acreditamos ser o protocolo de medidas mais correto para a avaliação do EMC para fins práticos. A partir desta conclusão, analisamos três outras amostras que apresentam comportamentos não usuais e alto potencial magnetocalórico e discutimos as diferenças. Perdas do EMC por histerese foram obtidas experimentalmente. Na segunda parte, com o auxílio de um calorímetro com o elemento Peltier capaz de realizar um giro de até 80° sob campo constante de até 1,9 T, realizamos o estudo do efeito magnetocalórico anisotrópico (EMC-ani) em amostras monocristalinas da família RAl2, obtidas pelo processo de Czochralski. Primeiramente medidas de calor específico e do EMC convencional foram realizadas nos monocristais, através do protocolo definido como ideal na primeira parte do trabalho, utilizando o sistema Peltier do PPMS. A partir desses dados, fomos capazes de obter o EMC-ani, de modo indireto, pela subtração das curvas obtidas. Por fim utilizamos o sistema Peltier de giro para realizar medidas diretas do EMC-ani em monocristais de DyAl2. Os resultados das medidas indiretas e diretas foram comparados com cálculos obtidos através de um modelo autoconsistente / Abstract: This thesis aimed to develop, present and justify the use of a methodology that allows one to evaluate the magnetocaloric effect (MCE), for any kind of material, such that the results reflects the real behavior of the sample submitted to magnetization cycles similar to those of magnetic refrigeration systems. To do so, we built measurement systems that uses Peltier devices as heat flux sensors to determine the heat absorbed or released by the sample in situations where the temperature, magnetic field, or angle between a given crystal direction and field changes. In the first part of the work, we report measurements using a Peltier device system developed for use with the Quantum Design PPMS (Physical Property Measurement System). We evaluated the indirect MCE measurements by using the most common techniques found in literature (through magnetization or specific heat curves) and compared to the direct heat flux measurements obtained through field sweep scans with our system. This analysis was initially made with two samples that present a first and a second order magnetic transition, considered as standard samples at MCE research area: Gadolinium and the Gd5Ge2Si2 alloy. We discussed the differences found and defined the measurement protocol that we believe to be correct to the practical evaluation of the MCE. From this conclusion, we analyzed three other samples that present uncommon behavior and high magnetocaloric potential and discussed their differences. MCE hysteresis losses were experimentally obtained. In the second part, with the aid of a calorimeter built with Peltier devices capable of perform an 80° rotation under constant magnetic field up to 1,9 T, we made the study of the Anisotropic Magnetocaloric Effect (MCE-ani) in monocrystalline samples of the RAl2 family grown by the Czochralski method. First, we made specific heat and conventional MCE measurements with the ideal protocol that was defined in the first part of the work, using the PPMS Peltier system. From these data, we were able to calculate indirectly the MCE-ani by subtracting the acquired curves. Finally, we used the Peltier rotation system to perform direct measurements of the MCE-ani in DyAl2 single crystals. The results of the indirect and direct measurements were compared with calculations achieved using a self-consistent process / Doutorado / Física / Doutor em Ciências / 1060137/2011 / CAPES
7

An Investigation On The Effect Of Structural And Microstructural Attributes On Magnetostriction Of Tb-Dy-Fe And Fe-Ga Alloys

Palit, Mithun 07 1900 (has links) (PDF)
Giant magnetostrictive RFe2 type (R represents rare earths) intermetallics form an important class of magnetic materials keeping in view of their potential applications as sensors and/ or actuators. In this thesis, one such mixed rare earth compound (Tb,Dy)Fe2 has been chosen for investigations. Being a technologically important material system, several investigations concerning physical and magnetic properties of the material and effect of processing parameters on magnetic properties have been reported in the available literature. However, existing literature does not provide a clear insight into some important aspects such as phase equilibria, evolution of texture and microstructure of directionally solidified Tb-Dy-Fe alloys. Therefore, the present work was undertaken to bring out tangible process-structure-property correlations with an emphasis to clarify the grey areas in the available literature. The investigation on the nature of ternary phase equilibria of Tb-Dy-Fe was taken up with an aim to understand the effect of Tb/Dy ratio on phase equilibria and magnetic properties of TbxDy1-xFe1.95 (x=0-1) alloys. Microstructural and micro-chemical analysis along with study of lattice parameter has been used to predict the nature of phase equilibria and the deviation from the assumed pseudo-binary behaviour. Further, from the microstructural investigations and study of lattice parameter and Curie temperature, a schematic sketch of a section of the ternary diagram, where (Tb,Dy) / Fe =1.95, was formulated and presented. Directional solidification technique is the most widely adopted method for processing the (Tb,Dy)Fe2, to impart grain orientation for practical applications. Therefore, it was aimed in the present study to understand the evolution of texture and microstructure in directionally solidified Tb0.3Dy0.7Fe1.95 alloy by modified Bridgman and zone melting techniques. The alloy was directionally solidified by modified Bridgman technique with a series of growth rates 5 - 100 cm/h, at a constant temperature gradient of 150oC/ cm. Microstructural investigation revealed formation of island banding at lower growth rate and peritectic coupled growth at higher growth rates. The texture study indicated a transition of growth texture from <113> to <110> and finally to <112> with increase of growth rate. A mechanism based on atomic attachment kinetics is proposed to explain the orientation selection with growth rate. The texture and microstructure have been correlated with magnetostriction and static strain co-efficient (dλ/dH) of the Bridgman solidified alloys. The solidification morphology observed in Bridgman solidified samples was found to be mostly plane front. Therefore, in order to understand the microstructure and texture evolution in cellular/ dendritic regime, directional solidification of Tb0.3Dy0.7Fe1.95 was attempted by zone melting technique with a lesser temperature gradient of 100oC/cm. A detailed texture study indicated a transition in preferred growth direction from <110> to <112> with increase of growth rate. In this case of cellular/ dendritic growth regime, a mechanism based on atomic attachment kinetics has been proposed and the preferred morphologies of the solid-liquid interface for <110> and <112> growth have been modelled. The modelled interfaces have been correlated to the shape of cell/ dendrite cross-section observed for the growth rates adopted in this study. Apart from the investigation carried out on the (Tb,Dy)Fe2 alloys, attempts have been made to understand the role of microstructure, especially the ordered phases on the magnetostriction of an emerging magnetostrictive material Fe-Ga. A series of alloy compositions of Fe-x at % Ga (x=17, 20, 23 and 25) were prepared and subjected to different thermal treatments and characterized for microstructural features and magnetostriction. Microstructure investigation of slow cooled, quenched and quenched + aged alloys reveals formation of ordered DO3 phase from disordered A2 phase by first order transformation in 17 and 20 at% Ga alloys, whereas for 23 and 25 at% alloys, the transformation takes place by continuous ordering. It could be observed that large magnetostriction arises owing to the presence of disordered A2 phase or ordered DO3 phase alone. The magnetostriction however decreases substantially when these two phases are co-existing.
8

O efeito magnetocalórico anisotrópico nos compostos RAl2 (R = Dy, Er, Ho, Nd, Tb) / Th e anisotropic magnetocaloric effect in RAl2 (R=Dy, Er, Ho, Nd, Tb) compounds.

Vinícius da Silva Ramos de Sousa 27 February 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / SOUSA, Vinícius da Silva Ramos de. O efeito magnetocalórico anisotrópico nos compostos RAl2 (R = Dy, Er, Ho, Nd e Tb). 2008. 99f. Dissertação (Mestrado em Física) - Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2008. O efeito magnetocalórico é a base da refrigeração magnética. O potencial magnetocalórico é caracterizado por duas quantidades termodinâmicas: a variação isotérmica da entropia (&#916;Siso) e a variação adiabática da temperatura (&#916;Tad), as quais são calculadas sob uma variação na intensidade do campo magnético aplicado ao sistema. Em sistemas magnéticos que apresentam uma anisotropia magnética é observada uma mudança no efeito magnetocalórico, isto porque este potencial torna-se fortemente dependente da direção de aplicação do campo magnético. A anisotropia em sistemas magnéticos pode levar a um efeito magnetocalórico inverso, assim como à definição de um efeito magnetocalórico anisotrópico, o qual por definição é calculado para um campo cuja intensidade é mantida constante e cuja orientação variamos de uma direção difícil de magnetização para a direção fácil de magnetização. O efeito magnetocalórico anisotrópico foi estudado para os compostos intermetálicos de terras raras do tipo RAl2 considerando-se um modelo microscópico que leva em conta as interações de troca (na aproximação de campo médio), de Zeeman e a interação de campo elétrico cristalino, que é a responsável pela anisotropia nos compostos RAl2. O efeito magnetocalórico anisotrópico foi investigado para a série RAl2 e comparado com o efeito magnetocalórico usual. / The magnetic refrigeration is based on the magnetocaloric effect. The magnetocaloric potential is characterized by the two thermodynamics quantities: the isothermal entropy change (&#916;Siso) and the adiabatic temperature change (&#916;Tad), which are calculated upon a change in the intensity of the applied magnetic field. In anisotropic magnetic systems it is observed a change in the magnetocaloric effect, since this potential becomes strongly dependent on the direction in which the external magnetic field is applied. The anisotropy in such magnetic systems can lead to an inverse magnetocaloric effect, as well as to the definition of an anisotropic magnetocaloric effect, that by definition is calculated upon a magnetic field which intensity is kept fixed and which orientation is changed from a hard direction of magnetization to the easy direction of magnetization. This anisotropic magnetocaloric effect was performed for the RAl2 intermetallic compounds considering a microscopic model Hamiltonian that includes the Zeeman interaction, the exchange interaction (taken in the mean field approximation) and the crystalline electrical field, that is responsible for the anisotropy in the RAl2 compounds. The anisotropic magnetocaloric was fully investigated for the serie RAl2 and compared with the usual magnetocaloric effect and several curves of (&#916;Siso) and (&#916;Tad) were obtained.
9

O efeito magnetocalórico anisotrópico nos compostos RAl2 (R = Dy, Er, Ho, Nd, Tb) / Th e anisotropic magnetocaloric effect in RAl2 (R=Dy, Er, Ho, Nd, Tb) compounds.

Vinícius da Silva Ramos de Sousa 27 February 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / SOUSA, Vinícius da Silva Ramos de. O efeito magnetocalórico anisotrópico nos compostos RAl2 (R = Dy, Er, Ho, Nd e Tb). 2008. 99f. Dissertação (Mestrado em Física) - Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2008. O efeito magnetocalórico é a base da refrigeração magnética. O potencial magnetocalórico é caracterizado por duas quantidades termodinâmicas: a variação isotérmica da entropia (&#916;Siso) e a variação adiabática da temperatura (&#916;Tad), as quais são calculadas sob uma variação na intensidade do campo magnético aplicado ao sistema. Em sistemas magnéticos que apresentam uma anisotropia magnética é observada uma mudança no efeito magnetocalórico, isto porque este potencial torna-se fortemente dependente da direção de aplicação do campo magnético. A anisotropia em sistemas magnéticos pode levar a um efeito magnetocalórico inverso, assim como à definição de um efeito magnetocalórico anisotrópico, o qual por definição é calculado para um campo cuja intensidade é mantida constante e cuja orientação variamos de uma direção difícil de magnetização para a direção fácil de magnetização. O efeito magnetocalórico anisotrópico foi estudado para os compostos intermetálicos de terras raras do tipo RAl2 considerando-se um modelo microscópico que leva em conta as interações de troca (na aproximação de campo médio), de Zeeman e a interação de campo elétrico cristalino, que é a responsável pela anisotropia nos compostos RAl2. O efeito magnetocalórico anisotrópico foi investigado para a série RAl2 e comparado com o efeito magnetocalórico usual. / The magnetic refrigeration is based on the magnetocaloric effect. The magnetocaloric potential is characterized by the two thermodynamics quantities: the isothermal entropy change (&#916;Siso) and the adiabatic temperature change (&#916;Tad), which are calculated upon a change in the intensity of the applied magnetic field. In anisotropic magnetic systems it is observed a change in the magnetocaloric effect, since this potential becomes strongly dependent on the direction in which the external magnetic field is applied. The anisotropy in such magnetic systems can lead to an inverse magnetocaloric effect, as well as to the definition of an anisotropic magnetocaloric effect, that by definition is calculated upon a magnetic field which intensity is kept fixed and which orientation is changed from a hard direction of magnetization to the easy direction of magnetization. This anisotropic magnetocaloric effect was performed for the RAl2 intermetallic compounds considering a microscopic model Hamiltonian that includes the Zeeman interaction, the exchange interaction (taken in the mean field approximation) and the crystalline electrical field, that is responsible for the anisotropy in the RAl2 compounds. The anisotropic magnetocaloric was fully investigated for the serie RAl2 and compared with the usual magnetocaloric effect and several curves of (&#916;Siso) and (&#916;Tad) were obtained.

Page generated in 0.1123 seconds